• 제목/요약/키워드: Inverse planning

검색결과 87건 처리시간 0.029초

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul
    • Radiation Oncology Journal
    • /
    • 제36권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획 (Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy)

  • 이종화;김자영;이지홍;김동혁;임현규;류시현
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.

방사선 수술 역방향 치료계획 유용성 평가 (Clinical Analysis of Inverse Planning for Radiosurgery ; Gamma Knife Treatment Plan Study)

  • 진성진;제재용;박철우
    • 한국방사선학회논문지
    • /
    • 제9권6호
    • /
    • pp.343-348
    • /
    • 2015
  • 감마나이프 방사선수술 전방향 치료계획과 역방향 치료계획을 비교 분석하였다. 10 case의 청신경초종 영상을 이용하여 동일한 조건으로 전방향 치료계획 1, 2(FP-1,2) 및 역방향 치료계획(IP)을 수립하고, 샷의 수(No of shot), conformity index(CI), Paddic conformity index(PCI), Gradiant index(GI), 치료시간 등을 비교 하였다. IP가 FP에 비하여 샷의 수가 적었으며, 표적용적이 증가할수록 샷의 수는 증가하였다. CI는 FP-1:0.85, FP-2 :0.86, IP:0.94, PCI는 FP-1:0.79, FP-2:0.81, IP:0.78로 IP가 높거나 비슷한 결과를 보였다. GI는 FP-1:2.94, FP-2:2.94, IP:3.01로 비슷한 값을 나타내었다. FP를 기준으로 상대적 조사시간은 전체적으로 IP가 짧은 것으로 나타났다. IP는 FP와 비슷하거나 우수한 평가값을 나타내고 치료계획에 소요되는 시간이 짧고 치료시간이 짧아 임상적으로 유용한 것으로 판단된다.

이족로봇의 동적 보행계획과 역동역학 해석 (Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot)

  • 박인규;김진걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

A Prototype of Robotic External Fixation System for Surgery of Bone Deformity Correction

  • Kim, Yoon-Hyuk;Joo, Sang-Min;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2448-2450
    • /
    • 2005
  • A robotic external fixation system for the surgery of bone deformity correction was developed to simulate the execution process of mal-unioned femur by the adjustment of the joints of the fixation system. An inverse kinematics analysis algorithm was developed to calculate the necessary rotations and translations at each joint of the robotic system. The computer graphic model was developed for validation of the analysis result and visualization of the surgical process. For given rotational and angular deformity case, the surgical execution process using the robotic system was well matched with the pre-operative planning. The final residual rotational deformities were within $1.0^{\circ}{\sim}1.6^{\circ}$ after surgical correction process. The presented robotic system with computer-aided planning can be useful for knowledge-based fracture treatment and bone deformity correction under external fixation.

  • PDF

시변 장애물 회피 동작 계획을 위한 수학적 접근 방법 (A mathematical approach to motion planning for time-varying obstacle avoidance)

  • 고낙용;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.388-393
    • /
    • 1990
  • A robot manipulator and an obstacle are described mathematically in joint space, with the mathematical representation for the collision between the robot manipulator and the obstacle. Using these descriptions, the robot motion planning problem is formulated which can be used to avoide a time varying obstacle. To solve the problem, the constraints on motion planning are discretized in joint space. An analytical method is proposed for planning the motion in joint space from a given starting point to the goal point. It is found that solving the inverse kinematics problem is not necessary to get the control input to the joint motion controller for collision avoidance.

  • PDF

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.

비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템 (Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment)

  • 강준수;이인제;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.