Browse > Article
http://dx.doi.org/10.3857/roj.2018.00122

Intensity-modulated radiation therapy: a review with a physics perspective  

Cho, Byungchul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
Publication Information
Radiation Oncology Journal / v.36, no.1, 2018 , pp. 1-10 More about this Journal
Abstract
Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.
Keywords
Intensity-modulated radiation therapy; Three-dimensional conformal radiotherapy; Radiotherapy planning; Quality assurance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abdel-Wahab M, Rosenblatt E, Holmberg O, Meghzifene A. Safety in radiation oncology: the role of international initiatives by the International Atomic Energy Agency. J Am Coll Radiol 2011;8:789-94.   DOI
2 Hoopes DJ, Dicker AP, Eads NL, et al. RO-ILS: Radiation Oncology Incident Learning System: a report from the first year of experience. Pract Radiat Oncol 2015;5:312-8.   DOI
3 Siochi RA, Molineu A, Orton CG. Patient-specific QA for IMRT should be performed using software rather than hardware methods. Med Phys 2013;40:070601.   DOI
4 Pawlicki T, Yoo S, Court LE, et al. Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 2008;89:330-7.   DOI
5 Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-smallcell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J Clin Oncol 2017;35:56-62.
6 Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE. Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 2008;71(1 Suppl):S71-5.   DOI
7 Monz M, Kufer KH, Bortfeld TR, Thieke C. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol 2008;53:985-98.   DOI
8 Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551-60.   DOI
9 Gutierrez AN, Westerly DC, Tome WA, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 2007;69:589-97.   DOI
10 Boyer AL, Desobry GE, Wells NH. Potential and limitations of invariant kernel conformal therapy. Med Phys 1991;18:703-12.   DOI
11 Bortfeld TR, Kahler DL, Waldron TJ, Boyer AL. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 1994;28:723-30.   DOI
12 Carol M, Grant WH 3rd, Pavord D, et al. Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 1996;66:30-4.   DOI
13 Bogdanich W. Radiation offers new cures, and ways to do harm [Internet]. New York, NY: New York Times; 2010 [cited 2018 Mar 1]. Available from: http://www.nytimes.com/2010/01/24/health/24radiation.html.
14 Ortiz Lopez P, Cosset JM, Dunscombe P, et al. ICRP publication 112. A report of preventing accidental exposures from new external beam radiation therapy technologies. Ann ICRP 2009;39:1-86.
15 Moran JM, Dempsey M, Eisbruch A, et al. Safety considerations for IMRT: executive summary. Med Phys 2011;38:5067-72.   DOI
16 Rim CH, Lee J, Kim WC, et al. A survey of radiation therapy utilization in Korea from 2010 to 2016: focusing on use of intensity-modulated radiation therapy. J Korean Med Sci 2018;33:e67.   DOI
17 Mackie TR, Scrimger JW, Battista JJ, Elkhatib E. A convolution method for calculating dose in situations of lateral electronic disequilibrium. Medical Phys 1984;11:397.
18 Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 1989;16:577-92.   DOI
19 Webb S. Historical perspective on IMRT. In: Palta JR, Mackie TR, Chen Z. Intensity-modulated radiation therapy: the state of the art. Madison, WI: Medical Physics Publishing; 2003. p. 1-23.
20 Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 2001;51:880-914.   DOI
21 Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 1988;12:129-40.   DOI
22 Webb S. Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 1989;34:1349-70.   DOI
23 Bortfeld T, Burkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol 1990;35:1423-34.   DOI
24 Ling CC, Burman C, Chui CS, et al. Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 1996;35:721-30.
25 Spirou SV, Chui CS. A gradient inverse planning algorithm with dose-volume constraints. Med Phys 1998;25:321-33.   DOI
26 Brahme A. Optimized radiation therapy based on radiobiological objectives. Semin Radiat Oncol 1999;9:35-47.   DOI
27 Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 1997;24:103-10.   DOI
28 Brahme A. Multi leaf collimator (US Patent No. 4,672,212). Washington, DC: US Patent and Trademark Office; 1987.
29 Carol MP. Peacock: a system for planning and rotational delivery of intensity-modulated fields. Int J Imaging Syst Technol 1995;6:56-61.   DOI
30 Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993;20:1709-19.   DOI
31 Bortfeld T. IMRT: a review and preview. Phys Med Biol 2006;51:R363-79.   DOI
32 Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982;27:1221-9.   DOI
33 Convery DJ, Rosenbloom ME. The generation of intensitymodulated fields for conformal radiotherapy by dynamic collimation. Phys Med Biol 1992;37:1359-74.   DOI
34 Svensson R, Kallman P, Brahme A. An analytical solution for the dynamic control of multileaf collimators. Phys Med Biol 1994;39:37-61.   DOI
35 Spirou SV, Chui CS. Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 1994;21:1031-41.   DOI
36 Stein J, Bortfeld T, Dorschel B, Schlegel W. Dynamic X-ray compensation for conformal radiotherapy by means of multileaf collimation. Radiother Oncol 1994;32:163-73.   DOI
37 Cho BC, Park SW, Oh DH, Bae H. Quality assurance for intensity modulated radiation therapy. J Korean Soc Ther Radiol Oncol 2001;19:275-86.
38 Park SW, Oh DH, Bae HS, Cho BC, Park JH, Han SH. Application of intensity modulated radiation therapy (IMRT) in prostate cancer. J Korean Soc Ther Radiol Oncol 2002;20:68-72.
39 Shepard DM, Earl MA, Li XA, Naqvi S, Yu C. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 2002;29:1007-18.   DOI
40 Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX. Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 2003;48:1075-89.   DOI
41 Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35:310-7.
42 Bichay T, Cao D, Orton CG. Point/counterpoint. Helical tomotherapy will ultimately replace linear accelerator based IMRT as the best way to deliver conformal radiotherapy. Med Phys 2008;35:1625-8.   DOI
43 Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435-49.   DOI
44 Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E. Intensity-modulated radiation therapy dose prescription, recording, and delivery: patterns of variability among institutions and treatment planning systems. J Natl Cancer Inst 2008;100:300-7.   DOI
45 International Commission on Radiation Units and Measurements. ICRU Report 83: Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 2010;10:NP.
46 Freedman GM, Anderson PR, Li J, et al. Intensity modulated radiation therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol 2006;29:66-70.   DOI
47 Lee N, Chuang C, Quivey JM, et al. Skin toxicity due to intensity-modulated radiotherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 2002;53:630-7.   DOI
48 Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56:83-8.   DOI
49 Wang C, Iwamoto K, Low D, Chen A. (S004) Trend in second malignancy risk for head and neck cancer with increased utilization of IMRT: analysis of SEER database. Oncology (Williston Park) 2016;30 Suppl:216628.
50 Journy NM, Morton LM, Kleinerman RA, Bekelman JE, Berrington de Gonzalez A. Second primary cancers after intensity-modulated vs 3-dimensional conformal radiation therapy for prostate cancer. JAMA Oncol 2016;2:1368-70.   DOI