• 제목/요약/키워드: Inverse eigenvalue problem

검색결과 21건 처리시간 0.024초

THE SOLVABILITY CONDITIONS FOR A CLASS OF CONSTRAINED INVERSE EIGENVALUE PROBLEM OF ANTISYMMETRIC MATRICES

  • PAN XIAO-PING;HU XI-YAN;ZHANG LEI
    • 대한수학회지
    • /
    • 제43권1호
    • /
    • pp.87-98
    • /
    • 2006
  • In this paper, a class of constrained inverse eigenvalue problem for antisymmetric matrices and their optimal approximation problem are considered. Some sufficient and necessary conditions of the solvability for the inverse eigenvalue problem are given. A general representation of the solution is presented for a solvable case. Furthermore, an expression of the solution for the optimal approximation problem is given.

The structured multiparameter eigenvalue problems in finite element model updating problems

  • Zhijun Wang;Bo Dong;Yan Yu;Xinzhu Zhao;Yizhou Fang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.493-500
    • /
    • 2023
  • The multiparameter eigenvalue method can be used to solve the damped finite element model updating problems. This method transforms the original problems into multiparameter eigenvalue problems. Comparing with the numerical methods based on various optimization methods, a big advantage of this method is that it can provide all possible choices of physical parameters. However, when solving the transformed singular multiparameter eigenvalue problem, the proposed method based on the generalised inverse of a singular matrix has some computational challenges and may fail. In this paper, more details on the transformation from the dynamic model updating problem to the multiparameter eigenvalue problem are presented and the structure of the transformed problem is also exposed. Based on this structure, the rigorous mathematical deduction gives the upper bound of the number of possible choices of the physical parameters, which confirms the singularity of the transformed multiparameter eigenvalue problem. More importantly, we present a row and column compression method to overcome the defect of the proposed numerical method based on the generalised inverse of a singular matrix. Also, two numerical experiments are presented to validate the feasibility and effectiveness of our method.

복합마디방법의 고유치문제에 응용 (An Application of the Multigrid Method to Eigenvalue problems)

  • 이규봉;김성수;성수학
    • 자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.9-11
    • /
    • 1996
  • Dirichlet 경계조건을 갖는 Laplace 고유치방정식의 고유치를 구하는 데 복합마디방법을 이용하였다. 유한차분법을 적용하여 행렬 고유치방정식을 만들고 이 방정식의 고유치를 구하기 위하여 역거듭제곱방법과 전체복합마디법을 사용하였다. 그 결과 고유치를 기존의 방법보다 더욱 빠르게 구할 수 있었다.

  • PDF

삼대각선행열의 행열식 고유값 및 역행열 (Determinant Eigenvalue and Inverse Matrix of a Tridiagonal Matrix)

  • Lee, Doo-Soo
    • 대한전자공학회논문지
    • /
    • 제23권4호
    • /
    • pp.455-459
    • /
    • 1986
  • A large set of linear equations which arise in many applications, such as in digital signal processing, image filtering, estimation theory, numerical analysis, etc. involve the problem of a tridiagonal matrix. In this paper, the determinant, eigenvalue and inverse matrix of a tridiagoanl matrix are analytically evaluated.

  • PDF

Variable Selection in Sliced Inverse Regression Using Generalized Eigenvalue Problem with Penalties

  • Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.215-227
    • /
    • 2007
  • Variable selection algorithm for Sliced Inverse Regression using penalty function is proposed. We noted SIR models can be expressed as generalized eigenvalue decompositions and incorporated penalty functions on them. We found from small simulation that the HARD penalty function seems to be the best in preserving original directions compared with other well-known penalty functions. Also it turned out to be effective in forcing coefficient estimates zero for irrelevant predictors in regression analysis. Results from illustrative examples of simulated and real data sets will be provided.

Inverse Eigenvalue Problems with Partial Eigen Data for Acyclic Matrices whose Graph is a Broom

  • Sharma, Debashish;Sen, Mausumi
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.211-222
    • /
    • 2017
  • In this paper, we consider three inverse eigenvalue problems for a special type of acyclic matrices. The acyclic matrices considered in this paper are described by a graph called a broom on n + m vertices, which is obtained by joining m pendant edges to one of the terminal vertices of a path on n vertices. The problems require the reconstruction of such a matrix from given partial eigen data. The eigen data for the first problem consists of the largest eigenvalue of each of the leading principal submatrices of the required matrix, while for the second problem it consists of an eigenvalue of each of its trailing principal submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the required matrix as the eigen data. The method of solution involves the use of recurrence relations among the leading/trailing principal minors of ${\lambda}I-A$, where A is the required matrix. We derive the necessary and sufficient conditions for the solutions of these problems. The constructive nature of the proofs also provides the algorithms for computing the required entries of the matrix. We also provide some numerical examples to show the applicability of our results.

깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅 (Finite Element Model Updating of Structures Using Deep Neural Network)

  • 공밍;박원석
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.147-154
    • /
    • 2019
  • 유한요소모델 업데이팅은 계측에 의한 구조물의 실제 응답과 가장 가까운 응답을 내는 유한요소모델의 매개변수를 찾는 문제로 정의할 수 있다. 기존 연구에서는 실 구조물과 해석 모델의 응답의 오차를 최소화하는 최적화에 기반 한 방법이 개발되었다. 이 연구에서는 목표 모드 정보로부터 유한요소 모델의 매개변수를 직접 얻을 수 있는 역 고유치 문제를 구성하고 역 고유치 문제를 빠르고 정확하게 풀기 위한 깊은 신경망(Deep Neural Network)을 구성하는 방법을 제안한다. 개발한 방법의 적용 예로서 현수교의 역 고유치 함수를 모사하는 신경망을 이용한 동적 유한요소모델 업데이트를 보인다. 해석 결과 제시한 방법은 매우 높은 정확도로 목표 모드에 대응하는 매개변수를 찾아낼 수 있음을 보였다.

INVERSE PROBLEM FOR INTERIOR SPECTRAL DATA OF THE DIRAC OPERATOR

  • Mochizuki, Kiyoshi;Trooshin, Igor
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.437-443
    • /
    • 2001
  • In this paper the inverse problems for the Dirac Operator are studied. A set of values of eigenfunctions in some internal point and spectrum are taken as a data. Uniqueness theorems are obtained. The approach that was used in the investigation of inverse problems for interior spectral data of the Sturm-Liouville operator is employed.

  • PDF

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF