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INVERSE PROBLEM FOR INTERIOR
SPECTRAL DATA OF THE DIRAC OPERATOR

KivyosHl MOCHIZUKI AND 1Gor TROOSHIN

ABSTRACT. In this paper the inverse problems for the Dirac Oper-
ator are studied. A set of values of eigenfunctions in some internal
point and spectrum are taken as a data. Uniqueness theorems are
obtained. The approach that was used in the investigation of inverse
problems for interior spectral data of the Sturm-Liouville operator
is employed.

1. Introduction

We consider the canonical form of the Dirac operator L (see [5]),
generated by the differential expression

{y) =By +Qzly (0<z<1)
with

=(50) em=(5F 50) wo-(080),

subject to the boundary conditions

(1) 11(0) = (1) =0,
where p(z), g(z} € C'[0,1] are real-valued functions.

As is well known, the operator L has a discrete spectrum consisting
of simple eigenvalues \,, n € Z. We denote by y,,(z) = (¥%(z), ¥3(z))T,
n € Z, the corresponding eigenfunctions.

Research of inverse problems for Dirac operator follows investigations
of closely related inverse problems for Sturm-Liouville operator. T. N.
Arutyunyan [1] obtained an analog of Marchenko theorem {7], [8] ; he
proved that the eigenvalues A,, n = 0,1,2,... and normalising coeffi-
cients o, = [lynligzz1)2, 7 =0,1,2,... (for yn,1(0) = 0, yn2(0) = —1)
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uniquely determined the potential @(z). M. M. Malamud [6] proved an
analog of Borg theorem [2]; he showed that the spectra of two boundary
value problems for an operator with different boundary conditions at
one end (and identical conditions repeated at the other end) uniquely
determined the potential @(z). He also proved an analog of the theo-
rem of Hochstadt and Lieberman [4]; one spectrum and a potential on
the interval (0, 1) uniquely determined the potential Q(z) on the whole
interval [0, 1].

The aim of our present work is to investigate a possibility to recover
potential from the known eigenvalues and some information on eigen-
functions in the internal point b € {0,1). The similar problem for the
Sturm-Liouville operator is formulated and studied in our papers [9],
[10]. In these articles we have employed technique similar to those used
in [4], 11].

Let us introduce a second Dirac operator L generated by differential
expression

I(y) =By +Qz)y (0<z<1),

-5 5)

with a real-valued (x), g(z) € C'[0,1], subject to the same boundary
conditions (1).

We denote by ., n € Z, and §,(2z) = (§P(z),§3(=))T, n € Z,
eigenvalues and corresponding eigenfunctions of operator L.

where

THEOREM. If for anyn € Z

An = 5\n1 = s

then p(x) = p(z) on the [0,1].

REMARK. The same result can be obtained by the same method in
the more general case of boundary conditions

y1(0) cosa + y2(0)sina =0, y1{1)cos B+ ya(l)sin 3 = 0.

2. Preliminary remarks

‘We shall first mention some results which will be needed later.
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Let us denote by w(z,\) = (wi(x, ), we(z,A)T and w(z, ) =
(1 (, A), W2z, A))T the solutions of initial-value problems

(2) Bvw' + Q(z)w = Aw,
(3) w1(0) = 0, we(0) = ~1;
and

(4) B + Q(z)® = Mb,

@1(0) = 0, we(0) = —1.
There exist (see [3], [5]) kernels K(z,t) = (Kij(m,t))%j=1, K(z,t) =
(I-'(,-j (z, t))?,j:l) with entries continuously differentiableon 0 <t < v <1
such that

(5) man=%m»+£ku@%wn@

’LE‘(:E, )\) = ¢0(1‘, )\) + /;m R(x, t)¢0(t, A)dt

Here ¢o(z, A) = (sin Az, — cos Az)7.
We can show that
(Jw(z, A), @ (z, A))

T X
= —cos(2Az) + [ Ry(z,t) cos(2At)dt + ] Rs(z,t) sin(2At)dt,
0 0 .

where {(a1,a2)7, (b1,b2)7} = a1by + asbs,

7= (o %)

and Ry (z,t) = (R,f;j (z, t))?,j=1’ !l = 1,2, with entries piecewise-continuously
differentiable on 0 <t < v < 1.

(6)

3. Proof of Theorem

If we multiply (2) (in the sense of scalar product in R?) by 9(x, A)
and (4) by w(z, A) and subtract, after integrating from 0 to %, we obtain

L

5 {(Q2) — Q@))w(z, N), ¥ (z, \))dz

— (i, A), wi (2, N)) — (@1, A), w2, WDIE.
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Functions w(z, A) and 0(x, A) satisfy the same initial conditions (3), i.e.
(152(0, A)yw1(0,A)) — (@1(0, A), w2(0, A)} = 0.

Define }
P(z) = Q(z) — Q(z},

and

—

HO) = / (P(x)w(z, N), Bz, N))dz.
0
Therefore from the conditions of the theorem it follows that
1 1 | 1
(102( ’\n)awl(ia)\n)) - (wl(E:An):w2(§a)\n)> =0

5:
and hence
H(MAM)=0,neZ
In the case of consideration we Fave

H(\) = fo  ple)(w(e, N, Bz, Nz,

-

and from (6)

1

HQ\) = /0 ? p(@)[- cos(2Az)
(7) + /z Ry (z,t)cos(2At)dt
0

+ /09»‘ Ra(z,t) sin(2At)dt])dz.
Therefore it follows that H(A) is an entire function of order no greater
than 1.
We next define the function
w(A) = w (1, A).
It follows from the formula (5) that

1
w(A) = sin A + fo (K (1, £)do(t, N]1dt.

Integrating by parts we obtain the following asymptotic relations :
exp(li‘f/\l))

3 .
The zeros of w(A) are the eigenvalues of L and hence it has only simple
ZETO8 Ap.

(8) wl(A) =sin A+ Of
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From this and the estimates for w()\) and H(A) it follows that
H{A)
A= —=
x(A) = — ™
is the entire function of order no greater than 1.

It follows from asymptotic (8) and formula (7) that x(A) is bounded
on any nonreal axis with vertex in origin of A-plane. Then it follows
from the Phragmen-Lindelof theorem that x(A) = K is constant on the
whole A-plane.

Let us show that K = 0. We can rewrite the equation H({\) =
Kw(1,A) in the form

1

]5 p(w)[ — cos(2Azx) + fm Ri(z,t) cos(2At)dt
0 0

9 .

(9) + fo Rs(z,t) sm(ZAt)dt] dr

Y
= K(sinA + O(w) )
By use of the Rimann-Lebesque lemma, the left side of (9) tends to
0 as A — oo, A € B. Thus we obtained that K = (0. We are now going
to show that @(xz) = 0 a.e. on [0, }.
We have

1
/’2
0

+ f Ra(z,t) sin(2At)dt|dz = 0.
0

p(a:)[—% cos(2Ax) + /I Ry (z,t)cos(2At)dt
0

This can be rewritten as
1

_/05 cos{2X7)[p(T) + /5 p(z) Ry (z, t)dz]dT

+ fo ? sin(2A7) [r ’ p(z) Ry(z, t)dz = 0.

Thus from the completeness of the functions (cos(2A7), sin(2A7))T in
L2(0,1/2)2, it follows that

1

p(T) +f§p(:c)R1(a:,t)da: = for0<1< %

But this equation is a homogeneous Volterra integral equation and has
only the zero solution. Thus we have obtained p(z) = 0 on [0, %]
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To prove that p(z) = 0 on [1/2,1], we should repeat arguments for
the supplementary problem

Hy) =By + Qi(x)y, Qu(z)=Q(1—z) (0<z<1)

subject to the boundary conditions y,(0) = 3,(1) = 0.
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