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Variable Selection in Sliced Inverse Regression Using
Generalized Eigenvalue Problem with Penalties

Chongsun Park?

Abstract

Variable selection algorithm for Sliced Inverse Regression using penalty
function is proposed. We noted SIR models can be expressed as generalized
eigenvalue decompositions and incorporated penalty functions on them. We
found from small simulation that the HARD penalty function seems to be
the best in preserving original directions compared with other well-known
penalty functions. Also it turned out to be effective in forcing coefficient
estimates zero for irrelevant predictors in regression analysis. Results from
illustrative examples of simulated and real data sets will be provided.

Keywords: Sliced inverse regression; variable selection; penalty functions; simulated an-
nealing.

1. Motivation

Quite possibly most of statisticians agree that the regression analysis is one of
the most popular and powerful tool in predictive modeling area. Nevertheless they
also agree that usual linear or generalized linear model have several drawbacks
in the model itself due to the lack of flexibility resulted from strict assumptions
on model parameters and distribution. Sliced Inverse Regression (SIR; Li, 1991)
is known as an efficient tool finding relevant linear combinations of predictors
in regression analysis with minimal assumptions on the model. With assump-
tions that unknown number of linear combinations of predictors are needed in
the regression model and a restriction on predictors SIR has been known to be
successful in finding those directions effectively. In order to find underlying re-
gression structures it is possible to do some further analysis using graphical or
other well-established statistical tools with estimated directions from SIR.
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In practice, a large number of predictors are introduced in the initial stage of
regression modeling and one of the most difficult aspects of SIR in this case is the
interpretation of e.d.r. (effective dimension reduction) directions which normally
have all non-zero coefficient estimates as in usual regression problems. Li (2000)
recommended a try-and-error procedure for variable selection in the SIR which
uses R? as its criterion and hardly no further researches have been done regarding
this issue so far.

As noted in Li’s original paper, SIR can be expressed as a generalized eigen-
value problem which is equivalent to principal component analysis (PCA). Fur-
ther a number of methods are available to aid interpretation in PCA by ignoring
irrelevant predictors or forcing coefficient estimates to zero somehow. Hence by
combining these two, new algorithms for variable selection in the SIR would be
possible. A common approach in variable selection in PCA is ignoring any coef-
ficients less than some threshold value, so that the function becomes simple and
the interpretation becomes easier. Jolliffe (1972, 1973) examines some of possi-
ble methods which discard irrelevant variables using multiple correlation, PCA
itself, and clustering. Cadima and Jolliffe (1995) noted that this can be mislead-
ing. More formal ways of making some of the coefficients zero are to restrict the
coefficients to a smaller number of possible values in the derivation of the linear
functions like —1, 0, 1 (Hausman, 1982). And a variation on this theme (Vines,
2000) is also possible. Rotation method used in factor analysis is also applicable
but has its drawbacks (Jolliffe, 1989, 1995). McCabe (1984) introduced a new
strategy to select a subset of the variables themselves and called it ‘principal
variables’.

Other possible way would be introducing penalty function as in regression
analysis. Fan and Li (2001) proposed a variable selection method using a pe-
nalized likelihood functions and argued that by using a unified approach via
penalized least squares it is possible to retaining good features of both subset
selection and ridge regression. Further they showed with proper choice of regu-
larization parameters that the proposed estimators perform as well as the oracle
procedure in variable selection. Recently, Jolliffe et al. (2003) applied L; penalty
function method to maximization problem of PCA in order to force any irrelevant
coefficients in the principal components to zero. He included L; penalty function
as an extra constraint to a optimization problem which maximizes variance of
linear combination of variables and showed that it is more preferable to rotation
methods and several others.

In this paper, we propose a new technique of choosing linear combinations
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of predictors in the SIR which successively maximizes variance, as in PCA, but
we impose extra constraints which sacrifices some variance in order to improve
interpretability. By including penalty functions in probabilistic PCA models
for SIR, it is possible to force estimates related with unnecessary predictors to
zero safely so making interpretations easier. We noticed from small simulation
that hard thresholding (HARD) penalty function seems to be preferable to other
well-known penalty functions like L; and Smoothly Clipped Absolute Deviation
(SCAD; Fan and Li, 2001) functions. In orcer to find successive linear combi-
nation of predictors which should be included in regression models well known
simulated annealing algorithm for function optimization could be adopted. This
idea may be readily applicable to variable selection in principal component anal-
ysis itself even when there are some missing values in predictors at random.

In Section 2, basics of SIR will be introduced and penalized SIR, main idea
of including penalty functions to generalized eigenvalue problem from the SIR,
is in Section 3. An algorithm using simulated annealing (Aarts and Korst, 1989)
to find regression coeflicient estimates together with parameter settings will be
included in Section 4. Results with illustrative examples from simulated and real
data sets are in Section 5. Finally, concluding remarks follow in Section 6.

2. Sliced Inverse Regression (SIR)

Suppose we have a univariate response variable y and p predictors x =
(1,2, ..., %p), and observed independent n cases for these variables. Then the
model assumed in the SIR becomes

y = f(B'x,8%x,...,85x,¢) with (K <p), (2.1)

where € is independent of x, and f is an arbitrary unknown function on RP*1,
And @, ..., 3% are K p—dimensional unknown parameter vectors. The model
assumed in the SIR is more flexible than usual regression models at least in two
aspects. First, it does not need to assume any functional form for the regression
curve, and secondly it is possible to include more than two linear combinations
of predictors in the model.

Definition 2.1 Under the model (2.1), the space B generated by B, ..., 8%
is called the e.d.r. space. Any mon-zero vector in the e.d.r. space is called an
e.d.r. direction.
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Li (1991) considered inverse regression E(x|y) instead of forward one and
showed centered inverse regression curve, E(x|y)—E(x), which is a p—dimensional
curve in RP, lies on a K—dimensional subspace of e.d.r. directions. However,
predictors should satisfy Condition 2.1 to get e.d.r. directions via centered inverse
regression curve. This is called linear condition by Li and several well-known
distributions like normal and elliptically contoured distributions are known to
satisfy this condition.

Condition 2.1 For any b in RP, the conditional expectation E(bx\ﬂlx, 3%x,
.,,BKx) is linear in B'x,...,B8%x; that is, for some constants cp,c,...,cCKk,
E(bx|Bx, ..., ,BKx) =co+afx+ -+ cxBEx.

The main result of the SIR can be expressed as in the following theorem.

Theorem 2.1 (Li, 1991). Under the condition 2.1, and the model (2.1) the
centered inverse regression curve E(x|y)—E(x) is contained in the linear subspace
spanned by B*Vy (k=1,...,K), where Vi denotes the covariance matriz of x.

We see, therefore, that the eigenvectors, ,8’“, (k =1,...,K) associated with
the largest K eigenvalues of V|, = cov[E(x|y)] with respect to V are the stan-
dardized e.d.r. directions. Now suppose that we could get an estimate for Vy,
in some way, then we can apply generalized eigenvalue decomposition on this to
get e.d.r. directions for the model (2.1).

Here is an algorithm suggested by Li in his original paper.

e Divide range of y into H slices, I,...,Iy; let the proportion of the y; that
falls in slice A be pp.

Within each slice, compute the sample mean of the x’s and denote it by Xj,.

Form the weighted covariance matrix Vxh; =X pr(Xp — %) (Xn — %)

Compute the sample covariance for x’s, Ve = n~1 3% | (x; — %) (x; — %)*.

Find the SIR directions by conducting the eigenvalue decomposition of V,,
with respect to V.

%

Va8 = AiVi, (2.2)

A >

v

"'Zj\p-
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Equation (2.2) above is known as a generalized eigenvalue decomposition and
is equivalent to maximize

IBka|yﬁkt
B8

subject to
BV, =0, h < k.

Or it is the same as maximizing

BV, 8"
subject to

BV, A =1 and A"V, B =0, h<k for k>2.

3. Penalized SIR

Now consider applying penalty function idea to one of the above generalized
eigenvalue problems of the SIR. Using penalized least squares or likelihood idea
in variable selection is known to be better in that they are retaining good features
of both subset selection and ridge regression (Fan and Li, 2001). The stepwise
deletion and subset selection as alternatives to using penalty idea tend to ignore
stochastic errors inherited in the stages of variable selections and further it suffers
from several drawbacks including its lack of stability as analyzed, for example,
by Breiman (1995).

Suppose we have a penalty function p)(#). Then the typical regression prob-
lems with penalized least squares or likelihood becomes to find coeflicients which
minimizes the following unified “Loss+Penalty” function

H(B) + nZj_1pa(16])- (3.1)

The first term in the above objective function (3.1) may be regarded as a loss
function of B = (B, ..., Bp), and would be T(y — 8x)? for least squares method
and it becomes the negative of likelihood for generalized linear models for exam-
ple.

Consider problem of applying penalized method to one of relevant SIR direc-
tions. As defined in previous Section if we let E[cov(x|y)] = Vi, and Cov(x) =
Vi then the objective function which need to be minimized becomes

IBVx|yﬂt
BViB"

+ Z0_ea(1851)-
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Now if we can get consistent estimate for E[cov(x|y)] in a certain way like by
slicing and averaging as suggested by Li in his original SIR paper, then we have

BV’
AV
as our objective function with appropriate penalty functions for py(-). Now we
can combine “Loss+Penalty” functions for all K relevant components with or-

+ 2_17')=lp/\(|/3j|)>

thonormal constraints to successive optimization problems as follows.

Penalized SIR (PENSIR) on a covariance matrix E[cov(x|y)] finds linear com-
binations B'x, 3%x,...,B8%x of the p measured variables x which successively
have minimum “Loss + Penalty” function

IBka ﬂkt
e B (=1, K

subject to
BV, B =0, h < k.

Or equivalently it is the same as minimizing
t
BV, B85 +TE_pa(18F) (k=1,...,K)

subject to ‘
BV, 8" =1 and (for k> 2) 4B =0,k < k.
Several well-known penalty functions including SCAD penalty function are

as follows.

Lpy: p,\(lﬂJ’?D = )\|ﬁ]’-°|f’ and it becomes LASSO (Tibshirani, 1996) with p = 1 for
least squares case.

Hard Thresholding (HARD) Penalty: px(8F) = A — (|85 - X)2I(|BF| < X).
Smoothly Clipped Absolute Deviation (SCAD) Penalty:

2Bk if BF < A,
K2 k 2
PA(ﬂj) =9 2(a—1)
(a +1))?
e

if,\gﬁf < al,
if,6’§c > al,

where B;“ is j’s coefficient of k’s component in the regression set up, and
a (> 2) and X are tuning parameters.
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Fan and Li (2001) mentioned unibiasedness, sparsity, and continuity as three
properties that a good penalty function should have, and suggested Smoothly
Clipped Absolute Deviation (SCAD) penalty function as the best one for regres-
sion problems. Unfortunately, none of three penalty functions satisfy all those
three properties simultaneously. L, penalty function is biased and this cause some
serious problem especially when applied to successive optimization problems in
which coefficients compete with each other due to orthonormality conditions on
them. We have seen from small simulations that bias problem in L; penalty is
so serious that including penalty function usually resulted in domination of one
or few variables with relatively large coefficients compared to others. By the
way, hard thresholding (HARD) penalty function is unbiased and has sparsity
but it is not continuous. SCAD behaves like something between L; and HARD
and needs two dimensional burdensome Generalized Cross-Validation (GCV) or
usual Cross-Validation (CV) to find optimal values for two parameters, a and .

Overall, it looks reasonable to use HARD penalty for the Penalized SIR (PEN-
SIR) problem since it looks better in forcing coefficients of irrelevant variables to
zero and at the same time minimizing bias problems after introducing penalty
function in the optimization procedure. We will consider HARD penalty function
only in further discussions.

4. An Algorithm

To solve two sets of optimization problems in the previous section we need to
use one of numerical algorithms for multivariate function. Two sets of problems
are identical in nature so one can choose either set which is easier in implementa-
tion. Simulated Annealing (SA) method, introduced by Kirkpatric et al. (1983)
is known to give near optimal solutions for multivariate optimization problems
with many local optimum so it could be effectively applicable to our problems.
These methods have been known to be applicable to combinatorial optimization
problems like salesman traveling problem and even applicable to continuous mul-
tivariate optimizations also. The main idea of SA is that random samples from
a distribution generated from a given multivariate objective function converge to
near optimal solution as scale parameter, usually known as temperature, of the
distribution becomes lower.

Now, let’s define the distribution

u(®) = Cexp (0(9))
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with D(8) = (8) + nZ%_,pA(16;]). The C is normalizing constant and 7 is
usually called temperature. Then the algorithm for finding 1st e.d.r. direction is
as follows.

STEP1 : Initialization
1. Set initial 3 from ordinary SIR
2. k =0 (Step function)
3. Set initial temperature o (temperature at k = 0.)
4. Set initial number of iteration Ly (number of sample at k£ = 0.)
5. Set v = 7o.
STEP2 : Repeat until convergence.
1. Forl =1 to L

(a) Set 8™V from neighborhood of Bl
(b) Set ﬂOld — IBIIGW if D('BHGW) S D('Bold)

(C) Set ,BO]'d — ﬂnew if D(ﬂIIeW) > D([@Old)
and exp((D(8°) - D(B"™))/w) > U0, 1]

2. k=k+1
3. Set 1, = 70 x (0.9)%.
oUTPUT : gl

In implementing SA, it is known to be very important to set parameters and
initial values for the model properly in order to get resonable solutions. For the
objective function, we need to provide appropriate intial values for 3’s first and
then it needs to choose neighborhood of them for the next iteration carefully.
Also parameters in the SA algorithm should be calibrated properly, too. Here
are some details for these issues.

Coefficient estimates from ordinary SIR would be a very good initial values for
B’s in the first and each subsequent e.d.r. directions in the PENSIR. Second and
subsequent components should be orthogonal to all previously obtained e.d.r.
directions. Hence, it should be considered in finding possible neighbor of 8’s
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for each iteration process so that new components should still be very close to
previous one to guarantee convergence of the algorithm.

We clearly have advantage in deciding on optimal A since for any SIR problems
we will have the value of loss function roughly close to —1. So it seems to be
enough to find resonable A which should be greater than 0 and at the same time
less than eigen value for each e.d.r. direction found from ordinary SIR. It would
be better try to find an optimal or near optimal value as the percentage of eigen
value from SIR. It could be an option to set A as a function of |I|, absolute value
of the loss function, p, the number of predictors, and an appropriate multiplier,

so that
A =1 x|l|v/2log(p)

with r > 0. Clearly, when r = 0 it would give the same results from ordinary
SIR without any constrains. And when r x 1/2log(p) > 1 the algorithm forces
all coefficient estimates except only one variable to zero. Hence optimal r should
be between 0 and 1/4/2log(p). Small experiments only with simulated and real
data sets included in this paper suggest r should be between 0 and 0.2 and the
solution tends to include one dominating coeflicient as r is greater than 0.2 or so.
Details of setting parameters in the SA algorithm can be found, as an example,
in Aarts and Korst (1989) and will not be discussed further here.

5. IMlustrations

In this section we generated simulated data sets with several regression models
and applied proposed penalized SIR approaches to demonstrate how it works. In
all examples we obtained penalized SIR estimates with hard thresholding penalty
functions only. We also include results of our penalized SIR approach applied to
a real data set.

5.1. Simulated Examples

Data sets for the first and the second simulated examples are generated from
linear regression model with independent and correlated predictors, respectively.
And the third data set is generated from a regression model in which the regres-
sion function is ratio of two linear combination of predictors with usual additive
errors so that the the dimension of the model is two.

Example 5.1 In this example we simulated a dataset consisting of 400 ob-
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servations from the model
y =3z + 1.529 — 2z5 + ¢,

where z = (z1,%2,...,2s) ~ N(0,1) and € ~ N(0,0.01).

Table 5.1: Coefficient estimates for linear regression models for several A’s

Variable
A 1 T2 I3 Ta s Te X7 rs
SIR 0.767 0.379 0.002 -0.019 -0.517 -0.006 0.003 0.007
0 0.767 0.374 0.001 -0.019 -0.521 -0.022 -0.009 0.005
0.1 0.768 0.373 0 0 —0.520 0 0 0
0.2 1 0 0 0 0 0 0 0

We can successfully force all coeflicients to zero for irrelevant predictor with
A = 0.1 as shown in the Table 5.1. Coefficient estimates on the top with A =“SIR”
correspond to estimates with A = 0. Hence, in this case no penalty is imposed on
the model. Even with HARD penalty functions the predictor x; dominates with
A larger than 0.2.

Example 5.2 The linear regression function in this example is the same as in
the first example except that predictors are correlated and two more unnecessary
predictors are added. This example is a simulated one with (z1, z3, x4, zs5, 7, T3,
zg9,Z10) ~ N(0,1), 2o = 2z5 + N(0,1) and zg = z1 + N(0,1) with same model
and error terms. The number of observation is 400 also.

Results (see, Table 5.2 for details.) are quite similar to the first one regardless
of correlated predictors and unnecessary predictors added. When the A is 0.1 all
coefficient estimates for irrelevant predictors become 0’s and firt two predictors
tend to dominate with A = 0.3 or larger.

Example 5.3 In this example we simulated a data set consisting of 400
observations from the model
_ r1 — 2:173
N (z2 + x4 + 1.5)2

Y + €

with z = (21,22, ...,210) ~ N(0,1) and € ~ N(0,0.01).



Variable Selection in SIR via Penalized Eigen Value Problem 225

Table 5.2: Coefficient estimates for linear regression models with correlated pre-

dictors
Variable

A 1 b z3 T4 Ts5 T6 7 Ts To T10
SIR 0.767 0.390 0.002 -0.005 -0.510 —0.004 —-0.004 0.004 -0.010 0.006

0 0.766 0.390 0.002 -0.006 —0.511 -0.005 -0.004 0.003 -0.009 0.007
0.1 0.767 0.389 0 0 —0.510 0 0 0 0 0
0.2 0.797 0.371 0 0 —0.477 0 0 0 0 0
0.3 0.997 0.081 0 0 0 0 0 0 0 0

Table 5.3: Coefficient estimates of first two components for the rational model

Variable
A T1 T2 3 T4 T5 Tg T7 g Tg T10

Component 1

SIR 0.462 0.134 -0.860 0.139 0.038 —-0.045 -—-0.042 0.023 -0.041 0.043
0.09 —0.495 0 089 0 0 0 0 0 0 0
0.13 —0.493 0 0870 0 0 0 0 0 0 0
0.18 —-0.494 0 0870 0 0 0 0 0 0 0
0.27 —0.493 0 0870 O 0 0 0 0 0 0
Component 2

SIR —0.089 0.640 0.327 0.654 0.008 -0.135 -0.102 0.110 0.039 0.076
0.09 0 0.678 0 0689 O —0.165 —0.090 0.144 0 0.100
0.13 0 0.700 0 0.704 0 0 0 0.143 0 0
0.18 0 0.709 0 0705 0 0 0 0 0 0
0.27 0 0.707 0 0.705 0 0 0 0 0 0

Coefficient estimates for the first two components are in Table 5.3. Clearly,
the proposed algorithm seems to work well on an unusual regression function too.

Estimates with A = 0.18 are similar to true values and it successfully forces all

irrelevant coefficients to zero for both components. Further we can see it still
works fine with larger A of 0.27.

5.2. Real Example

Results for application of our approach to only one real data set known as
Ozone data set is included. As similar to simulated illustraions we included
estimates for e.d.r. directions.

Example 5.4 This is well-known Ozone data set with Ozone as a response,
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Table 5.4: Coeflicient estimates of Penalized SIR for OZONE data set

Variable
A Temp. InvHT Pres. Visi. Height Humidity Temp2 WindSp.
SIR —0.962 0.003 -0.042 0.022 0.012 —-0.195 —0.184 0.003
0 —-0.962 0.003 —0.041 0.022 0.013 —0.196 -—-0.182 0.016
0.1 —0.968 0.003 0 0 0 —0.250 0 0
0.125 —0.969 0.003 0 0 0 —0.249 0 0

and Temparature, InversionHT, Pressure, Visibility, Height, Humidity, Temp2,
WindSpeed as predictors. The number of observation is 330. We only look at the
first direction only since only the first direction is known to be significant from
ordinary SIR.

It looks like three predictors, Temparature, InversionHT, and Humidity are
significant as in Table 5.4. Further it is clear from coefficient estimate of InvHT
that a important factor which gurantees non-zero coefficient is not the magnitude
of estimate itself.

6. Concluding Remarks

In this paper we propose a variable selection method for Sliced Inverse Regres-
sion analysis. We incoporated penalty functions for each coeflicient estimates and
solve penalized optimization problem using simulated annealing algorithm. Ac-
cording to results from simulated and real data sets we found our method turned
out to be very effective in forcing coefficient estimates zero for irrelevant predic-
tors for diverse regression models not only with linear but also with non-linear
regression functions composed of more than one linear combination of predictors.
And HARD penalty function is appropriate with relatively small bias for wide
range of A\ values for the SIR problem than well-known SCAD and L; penalty
functions which is known to be effective in usual linear and generalized linear
regression problems.

In practical regression problems with large number of predictors the proposed
method can be used effectively to obtain smaller set of relevant predictors for
further analysis especially when most of predictors are known to be irrelevant.
More detailed research for theoretical results regarding properties and asmptotics
for coeflicient estimates is necessary.
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