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THE SOLVABILITY CONDITIONS FOR A CLASS
OF CONSTRAINED INVERSE EIGENVALUE
PROBLEM OF ANTISYMMETRIC MATRICES

X1A0-PING PAN, XI-YAN HU, AND LEI ZHANG

ABSTRACT. In this paper, a class of constrained inverse eigenvalue
problem for antisymmetric matrices and their optimal approxima-
tion problem are considered. Some sufficient and necessary condi-
tions of the solvability for the inverse eigenvalue problem are given.
A general representation of the solution is presented for a solvable
case. Furthermore, an expression of the solution for the optimal
approximation problem is given.

1. Introduction

We consider a class of constrained inverse eigenvalue problem: Find
a real n x n matrix A € S such that

and

(1.2) A(AN\A(A) € Do,

where S is a given set of real n x n matrices. z,,2,,...,z,(m <
n) are given n-dimensional complex vectors and Z = [z, z,---2,].
AL, A2, ..., Ay are given complex constants and Ag = diag(Aq, e, ...,

Am)- A(A) and A(Ag) denote the set of eigenvalues of A and A respec-
tively. A(A)\A(Ao) denotes the difference of A(A) and A(Ag). Dy =
{z|lz] € a, > 0} is a given closed disk.

With no constraint (1.2) (o = +00) a class of matrix inverse eigen-
value problem is obtained. That is (1.1). For important results on the
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discussions of the inverse eigenvalue problem (1.1) associated with sev-
eral kinds of different sets S, such as antisymmetric matrices, centro-
symmetric matrices, symmetric and anti-persymmetric matrices and
Hermitian-generalized Hamiltonian matrices, we refer the reader to [3-

6).

For the case when S is the set of all real n x n symmetric matrices
this kind of problem was discussed in the literature ten years ago [2], but
it seems to have been neglected since. In this paper, we will discuss this
kind of problem for the case when S is the set of all real n x n antisym-
metric matrices. It is necessary to point out that we will consider given
multiple eigenvalues in this paper. Only simple eigenvalues, however,
have been discussed in [3]. In addition, the solution set of problem (1.1)
in (3] is a linear manifold. The solution set of (1.1) with constraint (1.2)
in this paper is only a closed convex set (See Corollary 2.1). Moreover,
some results in [3] is actually a special case which is contained in this
paper.

Let R™ and C™ denote the sets of n-dimensional real vectors and n-
dimensional complex vectors respectively. C?*™, R**™ SR"*" ASR™*"
and OR™"™ denote the sets of complex n X m matrices, real n x m
matrices, real n X n symmetric matrices, real n x n antisymmetric ma-
trices and real n x n orthogonal matrices respectively. The notation
R™™ denote all real n x m matrices with rank r. AT, AT, R(A),
N(A) and rank(A) denote the transpose, the Moore-Penrose general-
ized inverse, the column space, the null space and the rank of a ma-
trix A respectively. I,, is the identity matrix of order n. The notation
@Z?Zl Ajj = A D An@ - @D Ak denotes the direct sum of the

matrices Ay, Aga, ..., Apk, Aj; € R *"; . Define matrix inner product
(A, B) = tr(BTA), A, B € R"™. Then R™™ is a Hilbert inner product
space. The norm of matrix produced by the inner product is Frobenius
norm, i.e., ||4] = (4, A4) = (tr(ATA))%. Define vector inner product
(z,y) = y*z, 2,y € C", where y* = §*, ¢ is the component-wise conju-
gate. The norm of vector produced by inner product is Euclidean norm,
ie., ||lz|2 = /({z,z) = Vz*z, z € C". Two vectors x,y € C™ are called
orthogonal if (x,7) = 0. The notation V1 stands for the orthogonal
complement of the linear subspace V.

It is well known that each eigenvalue of a real antisymmetric matrix
A is either zero or pure imaginary. If a real antisyrnmetric matrix A
has imaginary eigenvalues, they must occur in complex conjugate pairs.
Notice that the-imaginary part of zero is zero, then the constrained
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inverse eigenvalue problem studied in this paper can be described as the
following problem.

PROBLEM 1. Given Z = [z,:--%,] € C™™ with m < n. Given
Ag = diag(A,,...,A,,) € C™*™, where A, is pure imaginary or zero,
7=1,2,...,m. Given a real number « > 0.

(1) Find a matrix A € ASR™" such that

(1.3) AZ = ZA,.

Denote the set of all the solutions of (1.3) by ¢(Z, Ag).

(2) Find the subset ¢(Z, Ag, ) C ©(Z, Ag) such that the imaginary
parts of all of the remaining eigenvalues of any matrix in ¢(Z, Ag, ) are
located in the interval [—a;, .

We also discuss the so-called optimal approximation problem associ-
ated with the solution set ¢(Z, Ag, ) of problem 1. The problem is as
follows.

PROBLEM 2. Given B € R"*". Find a matrix A € ¢(Z, Ap, @) such
that
(1.4) IB-All=__ inf [[B—A,

VAep(Z,Ao,x)
where || - || is the Frobenius norm.

The paper is organized as follows. In section 2 we will give and testify
the necessary and sufficient conditions for the solvability of problem 1
and the expression of the general solution of problem 1. In section 3 we
will prove that there exists a unique solution of problem 2 and give the
expression of the solution for problem 2.

2. The solvability conditions and general solutions of prob-
lem 1 in real field

From now on the lower-case English letter i will always be denoted a
formal symbol satisfying the relation i2 = —1.

LEMMA 2.1. Let A € ASR™™". Let x + iy be an eigenvector asso-
ciated with an eigenvalue \i, where x,y € R™ and A € R and X\ # 0.
Then

A

() #0,y#0and ale ) =lo5] | °) o],
(i) (z,9) = 0 and |lzll> = -



90 Xiao-ping Pan, Xi-yan Hu, and Lei Zhang

Proof. It A € ASR™™ and A(z +iy) = Mi(z + 1y), then A(x —iy) =
—Ai(z — iy). Hence, Ax = —Ay and Ay = Az, i.e.,

s =teil] O 3]

This, together with A # 0, yields  # 0 and y # 0.

Since A(z+iy) = £ i(ztiy) and A is a normal matrix and Ai # —Aq,
we have (z — iy)*(z +iy) = (x7z — yTy) +i(yTz + zTy) = 0. Notice
that y7z = 7y, we obtain (z,4) = 0 and ||z||2 = ||y||2. This establishes
the lemma. O

Next we consider the problem 1 in real field.
Let
P+l
21) X=X X, Xpu] € B™7, A=DY A e R,
j=1

where every column of X is a non-vanishing vector, m < n; X; =

[XJ('l)"'X(-mj)] c Rn><2mj7 X](_k) — [mgk) yj(k)] € Rn><27 j=1,...,p,

J
p .

E=1,..my, 23 m, =t KXo € Rx(m=0; AW = A, B P A,
7= ~ ~~ d

m.
2

0 X .
A]: _)\j O] €R2X27)\]—7é0,]:1a---,13§ /\[#/\wl’q:l;"',pa
l 7é q; A(p+1) =0 c R(m‘t)x(m_t)‘
Based on Lemma 2.1, we obtain the equivalent formulation of problem
1 in real number field.

PrROBLEM I3. Given X € R™™ and A € R™*™ are the same as
(2.1). Given a real number a > 0.
(1) Find a matrix A € ASR™ " such that

(2.2) AX = XA.

Denote the set of all the solutions of (2.2) by ¢(X,A).

(2) Find the subset (X, A, ) C ¢(X,A) such that the imaginary
parts of all of the remaining eigenvalues of any matrix in ¢(X, A, ) are
located in the interval [—a, .

We are now in a position to state the first main theorem of this
section.
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THEOREM 2.1. Let X € R"™ and A € R™ ™ satisfy (2.1). Then
the solution set ¢(X, A) in problem Iy is nonempty if and only if

(2.3) XTXe=0, j#k jk=12,...,p+1

24) lz®2 = ly® 2, @F,y*) =0, j=1,....p, k=1,...,m;

3 J

9,00) = (0,0, (9,40 + (60,49 0,
i=1,...,p; kF#Il, kKI=12....,m.

7

(2.5)

Moreover, the elements in the solution set ¢(X, A) can be expressed as
(2.6) A=Ag+UsGUY, VG e ASR*(n=r),
where Ag = XAX+, R(Uz) = N(XT) and U2TU2 = lnr.

Proof. We give the proof only for the case r < m. The proof for
r = m is similar.

(Necessity) Suppose that problem Iy has a solution A € (X, A).
Then XTAX = XTXA. From AT = —A and AT = —A, we have

(2.7) XTXA=AXTX.
It is not difficult to show that (2.7) is equivalent to (2.3), (2.4), and
(2.5).

(Sufficiency) Let the singular value decomposition of X as follows:
(2.8) . X=U [ % 8 } vt =usvf,

where U = [U; Us] € OR™", V = [V; Vy] € OR™™, Uy € R™,
R(U) = N(XT), V; € R™" | ¥ = diag(o,,...,0.),0, > >0, >0.

Suppose that (2.3), (2.4), and (2.5) hold. Then (2.7) holds. From
(2.7) and (2.8), we have

(2.9) NEVEA = AV ZAVT.

It follows from (2.9), V,f Vi = 0, and Vi'V} = I, that
(2.10) ViEAVL =0,

and

(2.11) SWVEAVE = 2VTAV L

Let Ag = XAX™t. It follows from (2.8), (2.11), and AT = —A and
X+ =S~ W07 that

(2.12) AT = (XAXT)T = —XAX* = — A,
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From (2.8), (2.10), and X*X = WV = I, - VLVl we get

(2.13) AgX = XAXTX = XA — XAV = XA.

Now (2.12) and (2.13) show that Ay € ¢(X,A). This means that the
solution set ¢(X, A) of problem I is nonempty.

In the following we show that if (2.3), (2.4), and (2.5) hold, then the
elements in the solution set ¢(X,A) can be expressed in the form of
(2.6).

For any A € (X, A), let

~ [4A4q A

2.14 UTAU = A = [ S ] ,
(2.14) An A
where A1 € R™ and U is given by (2.8). Since AX = XA, we have
AUTXV =UTXAV, ie.,

Apx 0] _ [ SVAV SVTAV,

Anx 0 0 0

This, together with (2.10), yields that

gll = EVlTAVli)_l and 1121 = 0.
Then, by AT = — A, we get

(2.15)

(2.16) A = SVTAVIE T,
(2.17) A =-A47, =0,
and

(2.18) Ay = — AL,

Let G = Agy. Tt follows from (2.14) and
DLESVIAVETIUT = XAXT = 4
that
A=UAUT
SVPABETT 0
0 Az
= U1 SVIAVSUT + Uy AgpUS
= Ag + U,GUY,

where matrix G € ASRM™")*("=1) is arbitrary, R(I/z) = N(XT) and
UTUy = I,,—,. This completes the proof. O

=U uT



The solvability conditions 93
In order to study the second question of problem Iy, we need the
following two lemmas.

LEMMA 2.201D . A € ASR™™ if and only if there is a real orthogonal
matrix Q € OR™ " such that

A, 0 -~ 0
Qraq=| ° |,

. Ak 0

0 -~ 0 0

where each A; € R?*? has the form

Aj = [ _OA_ ’};] i=1,2,...,k

J

LeMMA 2.3. Let A€ ASR™™. Let A€ Rand A\ # 0. Let z, + 1y, €
C" with z;,y, € R*, j = 1,2,...,k, k > 2. Suppose that \i is
an eigenvalue of A and x, + iy, is an eigenvector associated with i,

j=1,2,...,k. Then the following statements are true.

(i) Ifz, +iy,, , +1Y,, ..., x, + iy, are linearly dependent, then so
are T,, Yy, Loy Yos - s Loy Yooys L DA T, Yy, Toy Yoy ooy Ty
Ye—1s Yi- '

(ii) Eigenvectors x,+iy,, ,+1y,, .., €, +1iy, are linearly independent
if and only if vectors x,, Y,, Ty, Ysy «+» To_qs Yp 12 Tpr Y, al€
linearly independent.

(iii) Vectors z,, y,, y, Yo, ---, Ty, Y, are linearly independent if and
only if vectors x, +1y,, T, — W, Ty + 1Yy, Ty — 1Yy, - -, T, + 1Y,

x, — 1y, are linearly independent.

Proof. Using induction and Lemma 2.1, it is easy to prove (i) and
the necessity of (ii), and the sufficiency of (ii) and (iii) immediately
follow from (i) and the necessity of (ii) respectively. We only prove the
necessity of (iii).

If vectors ., ¥,, ©,, Y, - - -5 T, Y, are linearly independent, then so
are vectors x,, —¥,, T,, —Y,, ---, ZL,, —Y,. By the sufliciency of (ii),
eigenvectors =, +iy,, £, +1Y,, ..., T, +1y, and x, — iy, T, — 1Y,, .-,

x, — 1y,, which associated with the eigenvalue A\i and —\i respectively,
are linearly independent respectively. Since A is a normal matrix and
At # — i, the assertion follows.
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Let us introduce a notation. Given a real number o > 0. Let
AS RF_Xa"a] denote all real n x n antisymmetric matrices with the imagi-

H

nary parts of all eigenvalues located in the interval [—a, a].
We now state the second main result of this section.

THEOREM 2.2. Let X € R™™ and A € R™ ™ satisfy (2.1). Given
a real number oo > 0. Then the solution set (X, A, a) of problem I is
nonempty if and only if

(2.19) XXk=0, j#k k=12 ,p+1

(2.20)
le®llz = [yl @P,yP) =0, G=1,....p, k=1, m;

7 M

T L A L R A
j:].)'.~,p7 k#l, k7l:1,2,---,m..

7

Moreover, the elements in the set (X, A, o) can be expressed as
(2.22) A= Ay + U,GUY,

where Ay = XAX*, R(Uz) = N(XT) and U] Uy = I,,—,, matrix G €
ASRMIX (=) 4 arbitrary.

["0"0‘]
Proof. From Theorem 2.1, it suffices to show that if the solution set
(X, A) of problem Ij is nonempty then any matrix A of (X, A), which
can be expressed as

(2.23) A= XAXT +U,qUT

with G € ASR(™=7)x(n=7) only has r given eigenvalues and the remain-
ing n — r eigenvalues are the eigenvalues of the matrix G

Let A € ¢(X,A), and let the expression of A be (2.23). Suppose
that rank(X,.1) = r,, where Xp41 € R**(™~) is given by (2.1). Then
the matrix A has r, given 0 eigenvalues and r, given corresponding real
eigenvectors which are linearly independent.

By rank(X) = rank([X7 --- X, Xp41]) = r and (2.3) of Theorem 2.1
and Lemma 2.3, we conclude that rank([X;---X,|) = r — r, must be
even number, and the matrix A has r — r, given imaginary eigenvalues
and r — r, given complex eigenvectors which are linearly independent.
This implies that the matrix A has r given eigenvalues and r given
corresponding eigenvectors which are linearly independent.

Let =1 = 5. We may assume, for simplicity, that the r given eigen-
values of the matrix A are A4, —\4, ..., A4, =A%, 0,...,0 and the
D N —r

™
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r given corresponding eigenvectors, which are linearly independent, are
Ty F Yy, Ty — WYy e Ty T Wy Ty — YTy e Topp» T; € R", j =
L...,s+r,y, €Rk=1,...,s. Denote X =z, y,---z, y, &,

ms+r1]‘ Then R(X) = R(X) and vectors z,, ¥,, - - -, ,, Y,, T x

- s+17r " s+r1
are linearly independent. From R(X) = R(X) and R(X) = R(U1) =
R(Up)*, we get R(X) = R(Uz)*.

On the other hand, for the matrix G € ASR™)X("=7) which is
given by (2.23), according to Lemma 2.2, there exists a real orthogonal
matrix Qs = [¢, ---q,_,] € OR™ X" such that GQo = Q,A, where
~ k+1 . o
A=Y Aj, Aj= [ (ZL %”} € R?*?, p, 70, j=1,...,k 0<k<

j=1 T
[%57] ([25T] denotes the maximal integer number that is not greater than
n2r); Agp1 = 0 € R7=20x(n=r=2k) " This, together with X+tUp = 0
and UJU; = Iy, gives AU2Q2 = XAXHU3Q2 + UbGUIULQy =
Us@Q2A. This shows that p 4, —p, 4, .. .03, —p1, %, 0,...,0 are eigenval-
S—

n—r-—2k
ues of the matrix A, and U, q, +U,q,t, U,q, —U,q,?, ..., U,q,, _, +U,q,.1,
Uy oy — Uy95%, Usqopyys -+ U,g,_, are corresponding eigenvectors

which are linearly independent. Denote U2Q2 = [U,q, U,q, - U,q,_.]-
Clearly, R(U2Q2) = R(Uz). This implies that the vectors U,q,, U,q,,
..., U,q,,_, are linearly independent.
Now R(X) = R(Uz)* and R(U2Q2) = R(Us) yield that R(X) =
R(U2Q2)*. Thus, vectors Liy Yis oo T Yoy Tagrs - o1 Topr U,q,, U,q,,
.., U,q,_, arelinearly independent. By lemma 2.3 again, we obtain that
Ty Yy, Ty — Yy, e Ty Y, Ty, — Y, Tog, - Topr > U,q, +U,q,t,
Usg, —Us 058, - Usyy +U,05,.%, Us gy — Uy gy, 8, U2q2k+1’ o Usg,,
are n linearly independent eigenvectors of the matrix A associated with

eigenvalues A4, —A 4, ..., A%, =4, 0,...,0, p, 8, —p, %, ..., 1.8, — 1, %,
™

0,...,0, respectively, and the assertion therefore follows. O

N———r

n—r—2k

The following corollary is easy to prove.

COROLLARY 2.1. If (2.19), (2.20), and (2.21) hold, then the solution
set (X, A, ) of problem Iy is a closed convex set.
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3. The solution of Problem 2

First we introduce two notations and an operator.
Given B € ASR™ ™ and given a real number « > 0, let the real Schur
decomposition of B be

where Q € ORM™™" A=AMP-- DA DA D - - PADPO, A
[ 0 )\]} € R2 j = 1.k A > - > A > a > A,

v

- 0
. é A, > 0, s is a nonnegative integer and 0 < s < k; © =0
R(n—2k}x(n—2k)

m

Denote A, = 0 o .
—a 0
Let [A]a = Aa@--~@AQ@AS+1@“-®A]€®@, where Aj (_] =
s+1,...,k) and © are the same as (3.1).
Define

(3'2) [B]a = Q[A]aQT-

Obviously, matrix [B], is uniquely determined by the matrix B and the
real number a > 0; [A], € ASR" . and [B], € ASR™"

[—a7a] L[_ava].
LeMMA 3.1. Given B € ASR™ " and given a real number o > 0,

1B~ Blall=__inf Bz

[~a,a]
Proof. Without loss of generality, suppose that the real Schur decom-
position of the matrix B is the same as (3.1).
From the orthogonal invariance of the Frobenius norm, it follows

I1B—Z| = 1QT(QAQT — Z2)Q|| = 1A - QT ZQ|, VZ e ASRM"

[—OL,OL] )

Notice that for any Z € AS R?_Xa” o] Ve have QTZQ € AS RF_XC?Q]. Hence
[A=[Alall= inf A-QTZQ|= inf |B-2Z|.
VZEASRMX" ASRP<"

[—aal CASH o 0]

Clearly, [IA — [Ala]l = 1A — QT(QIAlaQT)Q| and Q[AlQT = [Bla €
ASRM™ k Therefore,

[—a,a
[B=[Blall= inf —|B-2Z|.
VZCcASR <™

[—ea]

The lemma is established. O
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THEOREM 3.1. Given B € R™ ", and given a real number o > 0,
let X € R?*™ and A € R™ ™ satisfy (2.1). If (2.19), (2.20), and (2.21)

hold, then there is a unique solution A for Problem 2 and A can be
represented as

(3.3) A= Ao+ U,GUY,

where Ag = XAX™; R(Uz) = N(XT), UTUy = In_r; G = [U¥ByUa)a
and B, = $(B — BT).

Proof. Because ¢(X, A, a) is a closed convex set, Problem 2 has a
unique solution A in ¢(X, A, ). This means that there exists a unique
matrix G € ASR™ X" guch that

[—a,a]
(3.4) A= A+ U,GUY
and
. — A= i B-A
(3.5) 1B — Al VAEJfEf, Ao ] I,

where Ay and Uj are given by (2.22).
Obviously, for given B € R™*™, there exist unique By € SR™™"™ and
By € ASR™™ such that

(3.6) B=DB1+ By, (B1,Bs)=0,
where By = (B + BT) and B, = (B — BY).

For any A € (X, A, @), by (2.22) and (3.6), we have

IB ~ A|? = ||B — (4o + U2GUY )|
= || B1l* + [|B2 ~ Ao — UGUS ||,

ie.,
(3.7) 1B ~ Al|* = | B||* + || B2 ~ Ao — U2GUF ||*.

Taking U; € R™ " such that UJU; = 0 and U{U; = I,. Denote

U = [Uy Us]. Then U € OR™"™. Applying the orthogonality of the
matrix U and AgUs = 0 and U;:PAO = 0, we obtain

| B2 — Ag — U2GUY ||* = |UT (B2 — Ao — UsGUT U2
= |UT (By — Ag)U1||? + |UT BoUs|?
+ [|Uf BoUh||? + ||[U5 BoUz — G2
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This, together with (3.7), (3.5), and (3.4), implies that ||B — A =

inf  ||B — A|| is equivalent to
VACo(X,A )
(38) U3 BU> -G = inf 1U5 B2Us — G-

VGeASR" D)

It follows from Lemma 3.1 that G = [UZ BaUs)a. This result and (3.4)
imply (3.3). This completes the proof. O
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