• Title/Summary/Keyword: Inverse design method

Search Result 355, Processing Time 0.031 seconds

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.

A DIRECT INVERSE-BASED CROSS-TALK CANCELLATION METHOD FOR STEREO AUDIO SYSTEMS (직접 역필터 설계법을 이용한 스테레오 재생시스템의 Cross-talk 제거)

  • Kim, Sang-Myeong;Dogeun Han;Semyung Wang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.559-564
    • /
    • 2002
  • Cross-talk cancellation, inverse filter design or deconvolution in a generic term, is a vital process for a virtual sound realization in the stereo sound reproduction system. Most, if not all, of the design algorithms available for the inverse filter are based on a linearized model of the real physical plant. The result of such a plant-based design method, which may be referred to here as the indirect method, is biased due to both modelling and inversion errors. This paper presents a novel direct cross-talk cancellation method that may be free from the inversion error. The direct method can directly models the inverse filter by a suitable rearrangement of the input and output ports of the original plant so that no inversion is required here. Advantages are discussed with various experiments in an anechoic chamber using a PC soundcard. Binaural reproduction tests conducted showed that the conventional indirect method yields about 8 % reproduction performance error on both ear positions, whereas the direct method offers about 3 %.

  • PDF

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

A Study on the Design Sea-state Determination Using the IFOSM Method (역 일계이차 모멘트법을 이용한 설계 해상상태의 결정에 관한 연구)

  • Lee, Jae-Ohk;Rho, Jun-Bumn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.447-453
    • /
    • 2010
  • Response-based approach is getting more preferred in determining the design sea-state for offshore structures because traditional environment-based approach is known to yield a much conservative design condition. This paper introduces the inverse first-order second-moment (IFOSM) method as a response-based approach, which is expected to give a more feasible design condition at the cost of reasonable number of motion analyses. The IFOSM method is based on the theory of probability and adopts an optimization scheme to determine the design point. Both the design maximum response and design sea state can be obtained straightforwardly from the optimum. The IFOSM method has been applied to a turret-moored FPSO's design problem and showed its effectiveness in practical use.

Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method (유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계)

  • Song, Y.J.;Hahn, Y.H.;Park, C.D.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir;Mekideche, Mohamed Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.365-369
    • /
    • 2009
  • Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.

Triple Error Correcting Reed Solomon Decoder Design Using Galois Subfield Inverse Calculator And Table ROM

  • An Hyeong-Keon;Hong Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.8-13
    • /
    • 2006
  • A new RS(Reed Solomon) Decoder design method, using Galois Subfield GF($2^4$) Multiplier, is described. The Decoder is designed using Normalized error position stored ROM. Here New Inverse Calculator in GF($2^8$) is designed, which is simpler and faster than the classical GF($2^8$) direct inverse calculator, using the Galois Subfield GF($2^4$) Arithmatic operator.