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METHOD FOR STEREO AUDIO SYSTEMS
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ABSTRACT

Cross-talk cancellation, inverse filter design or deconvolution in a generic term, is a
vital process for a virtual sound realization in the stereo sound reproduction system. Most,
if not all, of the design algorithms available for the inverse filter are based on a linearized
model of the real physical plant. The result of such a plant-based design method, which
may be referred to here as the indirect method, is biased due to both modelling and
inversion errors. This paper presents a novel direct cross-talk cancellation method that
may be free from the inversion error. The direct method can directly models the inverse
filter by a suitable rearrangement of the input and output ports of the original plant so that
no inversion is required here. Advantages are discussed with various experiments in an
anechoic chamber using a PC soundcard. Binaural reproduction tests conducted showed
that the conventional indirect method yields about 8 % reproduction performance error
on both ear positions, whereas the direct method offers about 3 %.

1. INTRODUCTION

Binaural synthesis and cross-talk cancellation
(binaural  reproduction) may  constitute
binaural technology for virtual sound
realisation in the stereo reproduction system
using two loudspeakers. Binaural synthesis can
be defined as a technique to synthesize a pair of
binaural sound signals from an original
monaural source signal with provision of the 3-
dimensional head-related acoustic information:
distance and direction of the source, space of
the reproduction field[1-5].

On the other hand, cross-talk cancellation
(binaural reproduction), or inverse filtering or
deconvolution in a generic term, is a signal
processing technique to design the inverse filter
of an acoustic plant in order to cancel out the
influence of the plant in which the binaurally
recorded sound signals are reproduced[6-11].
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This paper presents a novel direct cross-talk

cancellation method that may be free from the
inversion error. The direct method can directly
models the inverse filter by a suitable
rearrangement of the input and output ports of
the original plant so that no inversion is
required ere. Advantages are discussed with
various experiments in an anechoic chamber
using a PC soundcard.

2. CROSS-TALK CANCELLATION
ALGORITHMS
2.1 Overview of binaural technology for
perfect binaural reproduction
A complete binaural technology
implementation procedure for perfect binaural
sound reproduction at the listener’s eardrums is
illustrated in Figure 1 for a stereo reproduction
system that uses two loudspeakers[1,2]. A
given monaural source signal s(f) is first
processed using the two filters, 4,(jw) and
A,(jw), to yield a pair of the binaurally
synthesised sound signals, u,(f) and u,(¢). It is
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assumed in this paper that the binaurally
synthesised signals, u(t)={ul(t) uz(t)}T in
vector form, are already given. Thus we will
now only consider the problem of cross-talk
cancellation (binaural reproduction), or inverse
or deconvolution in generic term, that is to
perfectly reproduce the binaural signals at the
listener’s eardrums d(t)={dl(t) dz(t)}T via
cancellation of the electro-acoustic plant G(jw)
using the inverse filter H(jw). The eardrum
responses in the frequency domain can be
written as

d = GHu (1)

where frequency dependency of the variables is
suppressed for brevity. In theory, the physically
realisable perfect inverse filter for a given
linear plant G can be designed by introducing a
time delay term as given by [12]

H=G ¢/ #))

where the time delay 7 should be set large
enough for the impulse responses of the filters
to be causal stable. Substituting equation (2) to
(1) offers perfect reproduction of the binaural
signals, but with some time delay, as

d=ue” or d(¢)=u(t-7) 3)

where d(¢) is the time domain representation

of d.

Such a realisation of perfect reproduction is
only possible in a noise-free ideal situation
with assumptions that the plant G is LTI(linear
time invariant) and the filter H is causal and
stable and is the perfect inversion of G. In
practice, however, the plant is slightly non-
linear and time-variant so that G in Figure 1 is
only a linearlized model that is unavoidably
subject to some modelling error{13]. Even with
a perfect model of the LTI plant, furthermore,
caiculation of H in equation (2) can induce
inverse error due to the constraints of causality
and robustness on H.

Thus, we should change the mission to
authentic reproduction instead of perfect
reproduction. The performance error of the
binaural reproduction system for each channel
may be defined as

E[el (1))
J (%) = ——=22x 100 4
0 Elu; (1)] @

where E[oz] denotes the variance, and the

defined as
i=12

error signal is
e(®)=d,(t)-u(t-7) in which
denoting the left and right channels.

Figure 1. Binaural technology for perfect reproduction
where A,(jw) and A,(jo) conduct binaural synthesis and
H(j®) conducts cross-talk cancellation of the electro-
acoustic plant G(jw) . The signal s(t) is a
monaural  source  signal,  the  signal

T
u()={u () u»)}
synthesised sound signals, v(t)= {Vx @& v, (t)}T is
the loudspeaker output

d(?) = {dl ) 4, (t)}T is the sound pressures at the
listener’s eardrums.

vector

denotes  the  binaurally

signals, and

2.2 Conventional indirect methods

A. Time domain design methods

Figure 2(a) illustrates the input-output
relationship of the real physical plant g(¢),
where x(f) and y(¢) are the test input signal and
it corresponding output signal, respectively.
Note g(f) denotes the real physical plant,
while g(¢) denotes its linearlised model. To
identify the impulse response g(¢), the Wiener
filter can be most preferable used, which can be
explained in block diagram form as shown in
Figure 2(b). The Wiener filter g(f) is the
optimal filter that minimises the error e(f) in
mean square sense when the desired d(¢) and

- 560 -



received r(¢) signals are ergodic and stationary
random(14]. Thus, by setting r(t)=x(1) ,
d(t)=y(t),and e(z)=m(t), we get

() = g(£) * x(t) + m(z) (5)

where the impulse response g(f) is the
optimally linearlised model obtained by Wiener
filtering, and m(¢) denotes the plant modelling
error. There are also much faster frequency
domain modelling methods, such as, H,(jw),
H\(jw), and H,(jw) estimators[13].

x(r) K
— O] d— o)

d(1)

(a) Impulse response test (b) Wiener filter

Figure 2. Impulse response identification in a
SISO(single-input-single-output)  system; (a) Impulse
response ltest (b) Wiener’s problem of finding h(t) in
order to minimise the error signal in mean square sense
when the received and desired signals are ergodic and
stationary random.

18]

&)

Wiener filtering

Figure 3. Deconvolution of g(t) using the inverse filter
h(z).

The identified linear model g(#) can now be
used for design of its inverse A(?). As illustrated
in Figure 3, this design task is no more than a
deconvolution problem that is to deconvolute
g(#) using the inverse filter A(¢#)[6]. For the
general non-minimum phase plant g(¢), a
perfect deconvolution is only possible by
introducing an appropriate time delay 7 in
o6(t—7) [12]. Note here the deterministic

approach using an impulse &(¢) instead of

white noise w(?) is used as the input in Figure 3
since they are equivalent as far as the Wiener
filter is concerned[15]. Advantages of this
approach in the discrete time implementation
are its fast calculation time and high accuracy.
From the desired signal can be written as

O(t=1) =g()* () *S5(1) + n(r) (6)

where n(f) can be defined as the inverse error
that could be induced by, for example, a short
time delay z. Rewriting equation (6) for the
inverse filter with suppressing the inverse error
term gives

h(t)~ g™ ()*6(t—7) (7
The filter can be obtained using the

deterministic approach to the Wiener’s problem
with setting r(f) = g(¢) and d(£)=5(-1)[6,

14, 15].
The case of binaural reproduction for a pair of
binaural sound signals can be similarly

described by extending that for the monaural
signal described above. A corresponding
description for equation (6), but excluding the
inverse error term n(¢), can be written as

16(t—7) = H(t) *G(1) *IS(t)  (8)

where 1 is the (2x2) identity matrix, and the
impulse response matrices of the inverse filter
and plant are H(#) and G(2), respectively. The
inverse filter is given by[16]

- 81,(1)
gn ()

82 (1)

H() = A" () *
) «) l:"gZI(t)

}‘50—1)(9)

where 4™ (= (g”(t) *8n(t)— g, (1) *gZI(t))‘l . The
elements in the matrix are guaranteed to be
causal stable, and the rest term
AN *8(t—7) indicates again a
deconvolution problem for the SISO system as
given in equation (7).

B. Frequency domain design methods

A robust algorithm, as presented by Kirkeby et.
al.[10] is required, which is given by

H=(G"G+ M) G¥e (10)
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where the positive number £ is a regularisation
parameter that determines the trade-off
between performance and robustness.

2.3 New direct method
Let a non-linear filter % (¢t) denote the exact
inverse filter of the real physical plant g(¢)

shown in Figure 2(a). Then the input-output
relationship can be represented as shown in
Figure 4, where a time delay is intentionally
convoluted into the output signal x(¢—7) in

order to have a causal filter & (#) . Identifying

" (¢) is again the Wiener filter problem, thus
the output can be written as

x(t—7) = h(t)* y(1) + (1) an
where the optimal inverse filter A(f) can be
calculated using the Wiener filter, and /(¢) is the
inverse filter modelling error. With the direct
inverse method, it is strikingly that no explicit
inversion process so that there is no inverse
error n(f) is involved here.

d(f)

o o O
L en) — HO e

(b) Wiener filter

Figure 4. Impulse response identification of the inverse
filter for (a) a mono reproduction system and (b) its
identification using the Wiener filter

w | E

(a) Impulse response test

Now consider the stereo TITO system as
shown in Figure 5(a). A test input signal x,(¢) is
acting at the speaker 1 only, and the
corresponding outputs at the microphones are
yu() and y,(¢f). Likewise, the corresponding
output signals for the source input at the
speaker 2 can be written as y,,(t) and y,(f).
Thus, we get

x,(t-7)=H@)*y, (1) +1,(1),

X, (t-7)=H(O)*y, () +1,(2) (12a,b)

where _fx@-0) R 0 >
B L R L

yn(t)} N0 By(t) h(t)
t)y= ’ =471 > H =M 12 s
e {yu(t) ¥ {yno)} ® [huw hnu)J

l‘(,)z{ln(t)}, and lz(t)={ln(t)}. Assume now for
L0 (1)
simplicity that the same white noise w(f) is
used for both the test input signals so that
x,(¢) = x,(¢) = w(t) , then we get
Iw(t—7)=H(t)*Y(?) + L(?) (13)
By rearranging them, we finally have four
separate Wiener filtering problems as given by

—y'z(t)}*w(t—r) z[h“(t) h”(t)}*A(t)
yi(t) h(8)  hyp(t)

(14)

Yu ()
L~ Yt

where  A(1) = (3, (1) * 2 () = 10 () * ya (1) .
For example, the Wiener filter A,,(f) can be
calculated by setting the received and desired
signals as r(t) = A@®) and
d(t) =y, (t)*w(t—71). The other three filter
responses can be similarly obtained via Wiener
filtering.

ynlt) x(t-19
—d - >
H(1) 0

F—>

x(8) EU Io yult)

0 :ﬂ =0 d ) yult)

(a) Impulse response test (b) Inverse filter

Figure 5. Input-output relationships for (a) the physical
plant G(t) and (b) its corresponding inverse
filter ﬁ(t ).

3. BINAURAL SOUND
REPRODUCTION TEST

3.1 Experimental set-up

Binaural as well as monaural reproduction tests
were performed in an anechoic chamber, and
the geometric setting for the binaural case is
shown in Figure 6(a), where the distance
between the centres of the loudspeakers and
microphones / was 0.5m, and the distances
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between loudspeakers and microphones were
- 0.6m and 0.2m, respectively. For the monaural
case, the distance between the loudspeaker and
microphone was 0.5m. The whole experiments
including impulse response identification and
binaural reproduction were conducted in a PC
using a soundcard(LINX TWO®) as a front-
end device for data acquisition and
transmission. The loudspeakers used were
ordinary small two-way PC loudspeakers, and
the microphones were B&K 1/2-inch condenser
microphones(Type : 4189). Matlab® signal
processing and data acquisition toolboxes were
used for signal processing and data acquisition
and transmission.

Each of the four impulse responses of the (2x2)
plant matrix was first identified with a wire
connection setting as illustrated in Figure 6(b).
A MLBS(maximum length binary sequence) of
length (2'%-1) was used for the input signal, and
the lengths of FIR filters for the plant and the
inverse filter were both 1024. The sampling
frequency was 32000 Hz. The mean coherence
values of each plant were all above 0.94, which
indicates that the electro-acoustic plant is quite
linear. Finally, Figure 6(c) illustrates the wire
connection for binaural reproduction tests that
will be described in the following section. For
monaural reproduction, a single channel was
used in both the input and output ports.

(a) ()
oo : ” SOUNDCARD
: : /TE Stereo line input
i) : ; 44 0 A Stereo output
i ©
') SOUNDCARD

223 =3 Stereo line input

ity ::;! Stereo loudspeaker output

va(f)

i) |

Figure 6. Experimental set-up: (a) geometric set-up, (b)
Wire connection for impulse response identification, and
(c) Wire connection for binaural reproduction

3.2 Monaural reproduction test

The electro-acoustic plant impulse response
was calculated by using the Wiener filter, and it
is shown in Figure 7(a). The indirect and direct
inverse filters for authentic reproduction looked

very similar so that only the indirect inverse
filter is shown in Figure 7(b). Each of them was
implemented separately as the inverse filter,
and the reproduction results are shown in
Figure 8 where dotted lines denote the recorded
data while the solid lines denote the
reproduction error e,(f) . The reproduction

performance errors for the indirect and direct
methods are 1.4% and 0.9%, respectively.

IV

i
|

e it S e B T M e
. =

(a) Plant response (b) Inverse filter
Figure 7. Identification of the electro-acoustic plant and
its inverse filter using the indirect inverse method

—

(a) Indirect method (b) Direct method

Figure 8. Monaural reproduction performance errors:
(a) 1.4% and (b} 0.9% where the dotted lines denote the
recorded signal and the solid lines denotes the
reproduction error

3.3 Binaural reproductien test

Both indirect and direct inverse filter matrixes
were implemented separately, and the
reproduction results are shown in Figure 9(a, b)
as the same form of Figure 8. Only the
response on the left microphone is shown since
that on the right was similar, For the indirect
inverse filter, the performance errors of the left
and right channels were 8.2% and 8.1%,
respectively. On the other hand, when the
direct inverse filter matrixes were implemented,
they were 2.7 % on both left and right channels.
The reproduction performance errors for both
monaural and binaural sound signals are
tabulated in Table 1 for easy reference.
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(a)Indirect method (b) Direct method
Figure 9. Binaural reproduction performance errors on
the left microphone

Table 1. Binaural reproduction performance

errorsof the indirect and direct inverse
methods
Reproduction Indirect Direct
system inverse inverse
method method
Mono 1.4 % 0.9 %
Stereo Left 8.2% 27%
Right 8.1% 2.7%
4. CONCLUSIONS

An efficient method for binaural reproduction
of a pair of binaural sound signals has been
considered. Unlike the conventional methods,
the so-called direct inverse method considered
in this research does not refer to a linearlised
model of the real plant, but directly models the
inverse filter by a suitable rearrangement of the
input and output ports of the original plant so
that no inversion is required here. Advantages
are discussed with various experiments in an
anechoic chamber using a PC soundcard.
Binaural reproduction tests conducted showed
that the conventional indirect method yields
about 8 % reproduction performance errors on
both ear positions, whereas the direct method
offers about 3 %.
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