• 제목/요약/키워드: Invariants

검색결과 214건 처리시간 0.023초

On a Background of the Existence of Multi-variable Link Invariants

  • Nagasato, Fumikazu;Hamai, Kanau
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.233-240
    • /
    • 2008
  • We present a quantum theorical background of the existence of multi-variable link invariants, for example the Kauffman polynomial, by observing the quantum (sl(2,$\mathbb{C}$), ad)-invariant from the Kontsevich invariant point of view. The background implies that the Kauffman polynomial can be studied by using the sl(N,$\mathbb{C}$)-skein theory similar to the Jones polynomial and the HOMFLY polynomial.

CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

  • Furuhata, Hitoshi;Hasegawa, Izumi;Satoh, Naoto
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.851-864
    • /
    • 2022
  • We define a kind of sectional curvature and 𝛿-invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the 𝛿-invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

GENERALIZED CHEN INEQUALITY FOR CR-WARPED PRODUCTS OF LOCALLY CONFORMAL KÄHLER MANIFOLDS

  • Harmandeep Kaur;Gauree Shanker;Ramandeep Kaur;Abdulqader Mustafa
    • 호남수학학술지
    • /
    • 제46권1호
    • /
    • pp.47-59
    • /
    • 2024
  • The purpose of the Nash embedding theorem was to take extrinsic help for studying the intrinsic Riemannian geometry. To realize this aim in actual practice there is a need for optimal relationships between the known intrinsic invariants and the main extrinsic invariants for Riemannian submanifolds. This paper aims to provide an optimal relationship for CR-warped product submanifolds of locally conformal Kähler manifolds.

작도 접근 방식에 따른 중학생의 기하학적 특성 인식 및 정당화 (Seventh-Grade Students' Recognition of Geometric Properties and Justification Steps Emerging through Their Construction Approaches)

  • 양은경;신재홍
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권4호
    • /
    • pp.515-536
    • /
    • 2014
  • 본 연구에서는 GSP(Geometer's Sketchpad) 환경의 기하 문제 해결 과정에서 중학교 1학년 학생들이 각자의 작도 접근 방식을 통해 어떻게 기하학적 특성을 인식하고, 자신들의 작도에 대한 이유를 정당화하는지 살펴보았다. 다양한 드래깅 활동을 통해 학생들은 종속성 및 1수준 불변성을 파악하면서 자신의 작도 방식을 결정하였는데, 강건한 작도 방식을 택한 경우 기본 점의 경로를 바로 인식하여 1단계 정당화에 이른 반면, 유연한 작도 방식을 택한 경우에는 많은 시행착오를 거쳐 2수준 불변성과 경로를 인식한 뒤 2단계 정당화에 이르렀다.

  • PDF

ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS

  • Kim, Jin-Hong
    • 대한수학회지
    • /
    • 제47권4호
    • /
    • pp.675-689
    • /
    • 2010
  • For a closed symplectic 4-manifold X, let $Diff_0$(X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of $Diff_0$(X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {$n_1$, $n_2$, $\ldots$, $n_k$} and any non-negative integer m, there exists a closed symplectic (or K$\ddot{a}$hler) 4-manifold X with $b_2^+$ (X) > m such that the homologies $H_i$ of the quotient space $Diff_0$(X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = $2n_1$ - 1, $\ldots$, $2n_k$ - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati$\acute{c}$.

재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant (Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants)

  • 박정흠;좌경룡
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권8호
    • /
    • pp.999-1007
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.