• 제목/요약/키워드: Invariant operator

검색결과 114건 처리시간 0.019초

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS

  • Argyros, Ioannis K.;Ren, Hongmin
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.17-28
    • /
    • 2018
  • In this paper, we enlarge the ball of convergence of a uniparametric family of secant-like methods for solving non-differentiable operators equations in Banach spaces via using ${\omega}$-condition and centered-like ${\omega}$-condition meantime as well as some fine techniques such as the affine invariant form. Numerical examples are also provided.

REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS

  • Cho, Jong Taek
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1249-1257
    • /
    • 2016
  • We prove that the Ricci operator S of an almost cosymplectic three-manifold M is invariant along the Reeb flow, that is, M satisfies ${\pounds}_{\xi}S=0$ if and only if M is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space with a left invariant almost cosymplectic structure.

ON k-QUASI-CLASS A CONTRACTIONS

  • Jeon, In Ho;Kim, In Hyoun
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.85-89
    • /
    • 2014
  • A bounded linear Hilbert space operator T is said to be k-quasi-class A operator if it satisfy the operator inequality $T^{*k}{\mid}T^2{\mid}T^k{\geq}T^{*k}{\mid}T{\mid}^2T^k$ for a non-negative integer k. It is proved that if T is a k-quasi-class A contraction, then either T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative operator $D=T^{*k}({\mid}T^2{\mid}-{\mid}T{\mid}^2)T^k$ is strongly stable.

H-TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Gupta, Anuradha;Singh, Shivam Kumar
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.327-347
    • /
    • 2021
  • As an extension to the study of Toeplitz operators on the Bergman space, the notion of H-Toeplitz operators B�� is introduced and studied. Necessary and sufficient conditions under which H-Toeplitz operators become co-isometry and partial isometry are obtained. Some of the invariant subspaces and kernels of H-Toeplitz operators are studied. We have obtained the conditions for the compactness and Fredholmness for H-Toeplitz operators. In particular, it has been shown that a non-zero H-Toeplitz operator can not be a Fredholm operator on the Bergman space. Moreover, we have also discussed the necessary and sufficient conditions for commutativity of H-Toeplitz operators.

THE TOEPLITZ OPERATOR INDUCED BY AN R-LATTICE

  • Kang, Si Ho
    • 충청수학회지
    • /
    • 제25권3호
    • /
    • pp.491-499
    • /
    • 2012
  • The hyperbolic metric is invariant under the action of M$\ddot{o}$bius maps and unbounded. For 0 < $r$ < 1, there is an r-lattice in the Bergman metric. Using this r-lattice, we get the measure ${\mu}_r$ and the Toeplitz operator $T^{\alpha}_{\mu}_r$ and we prove that $T^{\alpha}_{\mu}_r$ is bounded and $T^{\alpha}_{\mu}_r$ is compact under some condition.

ON THE UNICELLULARITY OF AN OPERATOR

  • Joo Ho Kang;Young Soo Jo
    • 대한수학회논문집
    • /
    • 제10권4호
    • /
    • pp.907-916
    • /
    • 1995
  • The unilateral weighted shift operator $W_r$ with the weighted sequence ${r^n}^\infty_{n=0}$ is unicellular if $0 < r < 1$. In general, A + B is not unicellular even if A and B are unicellular. We will prove that $W_r + W^2_r$ is unicellular if $0 < r < 1$.

  • PDF

ISOMORPHISMS OF A(3) ∞(i,k)

  • Jo, Young-Soo;Kang, Joo-Ho;Cho, Kyu-Min
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.233-241
    • /
    • 1996
  • The study of non-self-adjoint operator algebras on Hilbert space was only beginned by W.B. Arveson[1] in 1974. Recently, such algebras have been found to be of use in physics, in electrical engineering, and in general systems theory. Of particular interest to mathematicians are reflexive algebras with commutative lattices of invariant subspaces.

  • PDF