• Title/Summary/Keyword: Invariant convergence

Search Result 114, Processing Time 0.024 seconds

LOCAL CONVERGENCE THEOREMS FOR NEWTON METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.345-360
    • /
    • 2001
  • Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the mth(m≥2 an integer). Radius of convergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover, we show that under hypotheses on the mth Frechet-derivative our radius of convergence can sometimes be larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also provided to show that our radius of convergence is larger than the one in [10].

A reliable quasi-dense corresponding points for structure from motion

  • Oh, Jangseok;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Seo, Kap-Ho;Kim, Hochul;Kim, Mingi;Lee, Onseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3782-3796
    • /
    • 2020
  • A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.

Design of a Controller using Algorithm in the Robust Controller (강인제어기 알고리즘을 이용한 제어기 설계)

  • Hwang, Yu-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.215-220
    • /
    • 2004
  • In this paper, some algorithms for robust stabilization of linerar time - invariant single - input - multi output (SIMO) systems subject to parameter perturbatations are presented. At first, the determination algorithm of the largest stable hypersphere in the parameter space of a given characteristic polynomial with its coefficient perturbations near some stable nominal values is presented. These algorithms iteratively enlarge the stability hypersph ere in plant parameter space and can be used to design a controller to stabilize a plant subject to givien range of parameter ecxursions.

  • PDF

Convergence Acceleration of the LMS Algorithm Using Successive Data Orthogonalization (입력 신호의 연속적인 직교화를 통한 LMS 알고리즘의 수렴 속도 향상)

  • Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.90-94
    • /
    • 2008
  • It is well-blown that the convergence rate gets worse when an input signal to an adaptive filter is correlated. In this paper we propose a new adaptive filtering algorithm that makes the convergence rate much improved even for highly correlated input signals. By introducing an orthogonal constraint between successive input signal vectors we overcome the slow convergence problem of the LMS algorithm with the correlated input signal. Simulation results show that the proposed algerian yields fast convergence speed and excellent tracking capability under both time-invariant and time-varying environments, while keeping both computation and implementation simple.

Camera Extrinsic Parameter Estimation using 2D Homography and Nonlinear Minimizing Method based on Geometric Invariance Vector (기하학적 불변벡터 기탄 2D 호모그래피와 비선형 최소화기법을 이용한 카메라 외부인수 측정)

  • Cha, Jeong-Hee
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.187-197
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features, Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time, The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum, In order to complement these shortfalls, we, first proposed constructing feature models using invariant vector of geometry, Secondly, we proposed a two-stage calculation method to improve accuracy and convergence by using 2D homography and LM method, In the experiment, we compared and analyzed the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

  • PDF

The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function (시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성)

  • Seok, Jin-Uk;Jo, Seong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

CONVERGENCE ACCELERATION OF LMS ALGORITHM USING SUCCESSIVE DATA ORTHOGONALIZATION

  • Shin, Hyun-Chool;Song, Woo-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.73-76
    • /
    • 2001
  • It is well-known that the convergence rate gets worse when an input signal to an adaptive filter is correlated. In this paper we propose a new adaptive filtering algorithm that makes the convergence rate highly improved even for highly correlated input signals. By introducing an orthogonal constraint between successive input signal vectors, we overcome the slow convergence problem caused by the correlated input signal. Simulation results show that the proposed algorithm yields highly improved convergence speed and excellent tracking capability under both time-invariant and time varying environments, while keeping both computation and implementation simple.

  • PDF

Implementation of a Robust Visual Surveillance Algorithm under outdoor environment (옥외 환경에강인한 영상 감시알고리듬구현)

  • Jung, Yong-Bae;Kim, Tea-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper describes a robust visual surveillance algorithm under outdoor environment. One of the difficult problems for outdoor is to obtain effective updating process of background images. Because background images generally contain the shadows of buildings, trees, moving clouds and other objects, they are changed by lapse of time and variation of illumination. They provide the lowering of performance for surveillance system under outdoor. In this paper, a robust algorithm for visual surveillance system under outdoor is proposed, which apply the mixture Gaussian filter and color invariant property on pixel level to update background images. In results, it was showed that the moving objects can be detected on various shadows under outdoor.

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE

  • Argyros, Ioannis K.;Hilout, Said
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2010
  • Wu and Zhao [17] provided a semilocal convergence analysis for a Newton-type method on a Banach space setting following the ideas of Frontini and Sormani [9]-[11]. In this study first: we point out inconsistencies between the hypotheses of Theorem 1 and the two examples given in [17], and then, we provide the proof in affine invariant form for this result. Then, we also establish new convergence results with the following advantages over the ones in [17]: weaker hypotheses, and finer error estimates on the distances involved. A numerical example is also provided to show that our results apply in cases other fail [17].