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Abstract

"It is well-known that the convergence rate gets worse when an input signal to an adaptive filter is correlated. In this
paper we propose a new adaptive filtering algorithm that makes the convergence rate much improved even for highly
correlated input signals. By introducing an orthogonal constraint between successive input signal vectors we overcome the
slow convergence problem of the LMS algorithm with the correlated input signal. Simulation results show that the
proposed algorithm yields fast convergence speed and excellent tracking capability under both time-invariant and

time-varying environments, While keeping both computation and implementation simple.
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I. Introduction

Adaptive filtering has drawn much attention since
its introduction due to the capability to cope with a
changing environment. The least-mean square (LMS)
algorithm is certainly one of the most frequently used
adaptive filtering algorithms due to its simplicitym.
The correlation of an input signal, however, highly
deteriorates the convergence speed of LMS adaptive

filters. In recent years, considerable efforts have been
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made to improve the convergence rate of LMS.

As a result, many variants of the LMS method
have been devised with simple modification or
additional filtering to improve the convergence rate.
Proakis proposed a variant of the LMS method where
gradient vectors are linearly filtered®. As another
attempt for fast convergence, a conjugate gradient
(CG) method has been developed®™. Although the
CG method has convergence properties superior to
those of ordinary LMS, the CG algorithm requires
much higher computational complexity than the LMS
method. Recently the orthogonal gradient adaptive
(OGA) algorithm which filters the gradient vector so
that the current gradient vector is orthogonal to the
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previous one was proposedwl, Although the OGA
algorithm is computationally as simple as the LMS
method, the convergence speed is much slower than
the CG algorithm.

In this letter we propose a new adaptive filtering
algorithm  based on data
orthogonalization. The proposed algorithm is
motivated by the fact that the orthogonality between
the current input vector and the previous one is an
important  factor for fast convergence. The
Gram-Schmidt orthogonalization procedure is used to
achieve the orthogonal relation between input vectors.
indeed the fast
convergence speed comparable with the CG algorithm

successive  input

The proposed method shows
while keeping computationally as simple as the OGA
algorithm. Throughout the letter, the following
notations are adopted:

XT

%l

Transpose of x

Euclidean norm ofx.

II. Geometric [nterpretation of LMS

Let a discrete-time signal z(n) be the input to an
adaptive transversal filter and d(n) be the desired
output. Then the error between the desired signal and
the adaptive filter output is given by

(D

where xT(n)=[x(n) z(n—1) - w(n~K+1)] is an
wy(n)]
The well-known LMS
algorithm for updating the weight vector is given by

(2)

input vector and w¥(n)=[w,(n) w,(n) -

is a tap-weight wvector.

win+1)=wn)+ pe(n)x(n),

u is a small positive constant for the
step-size. The LMS algorithm updatesw(n) so that
e?(n) is minimized.

To observe the behavior of the LMS method from
a geometric perspective we define a hyperplane which

where

consists of all vectors w such that e(n) =0, ie,

(173)
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Fig. 1. Geometric interpretation of LMS update.

¥ (n) = {wlx"(n)w=d(n)}.

Then the LMS algorithm moves w(n) toward the
hyperplane ¥(n) since e?(n) becomes smaller as
w(n) gets closer to ¥(n). From the linear algebraic
theorym, we know that all the perpendicular vectors
to the hyperplane ¥(n) are parallel to x{n). The
modification' vector pe(n)x(n) in (2) is parallel to
x(n) since pe(n) is a scalar quantity. This means
that the modification vector is perpendicular to
W(n). Thus from a geometric perspective w(n) gets
updated toward and perpendicular to the hyperplane
w(n). This interpretation is visually described in
Fig. 1.

Based on the above geometric framework, we can
examine the relation between the convergence rate
and the characteristics of the input vectors. We will
pay attention to the acute angle between the current
and the previous hyperplane. Let 6(n) be the acute
angle. To best visualize the situation, consider the
case when K = 2. Then the previous and the current
hyperplanes are defined as

U(n—1)=wk(n—1)wy+x(n—2)w, =d(n—1)
and
¥(n) = (wy,w))lx(n)wy+x(n—1)w; =d(n),

respectively. In this case the two hyperplanes are
two straight lines. Then the solution to the two
linear equations defining the two hyperplanes is the
crossing point w' of the straight lines. We assume
that the step-size is chosen to maximize the
convergence speed. This situation is illustrated in

Fig. 2.
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Fig. 2. Geometric illustration of convergence rate and
input signal.

Then it is easily derived that

cosf(n) = I w(n+1)—-*w I 3)
fwin)—w |
Consider a case 8,(n) > 8,(n) where
(n+1)—w"
cosf;(n) = [wiln+ 1) *W | i=1,2.
| win)—w |
Then since cos@, (n) < cosf,(n), it follows that
Iw (n+1)=w" [ < [wy(n+1)—w"|. (4)

(4) means that w,(n+1) is nearer to w' than
wo(n+1). So we know that w(n+1) gets closer

to w' if 8(n) increases from 0° to 90°. Se, for
fast convergence it is desired that 6(n) be close to
90°

Note that the acute angle #{n) is equal to the
angle between two vectors, x(n) and x(n—1)
which are perpendicular to ¥(n) and ¥(n—1),
respectively. By using the inner product property of
x(n) and x(n—1), the angle can be expressed by

xT(n—1)x{(n)

FCEnIEREOL ©)

cosf(n) =

It is obvious that this result holds for a higher
dimensional vector space, i.e, K > 2. As can be seen
in (5),
determined by the inner product between two input

the angle between two hyperplanes is

vectors of adjacent time. When x (n) is orthogonal to
x(n—1), 6(n) becomes 90°

convergence is achieved.

and thus {fastest
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1. Convergence Acceleration Using
successive data orthogonalization

From Sec.ll we know that the desired condition
for fast convergence is that x(n) is orthogonal to
x(n—1), ie, xTn)x(n—1)=0. To meet the
desired condition we construct new orthogonal input
by wusing the Gram-Schmidt
orthogonalization procedure, which is a step-by-step

signal  vectors
procedure for constructing an orthogonal basis from
an existing non-orthogonal basis'".

According to the Gram-Schmidt procedure, a new
orthogonal input vector to x'(n— 1) is obtained by

X'T(n—l)x(n)
Il x(n—1) 112

x'(n)=x(n)~ x'(n—1) (6)
where x'(0) = x(0). It can be easily seen that x'(n)
is orthogonal to x"(n—1).

Assume that the desired outputs when the input
vectors are x(n) and x'(n—1) are d(n) and
d' (n— 1), respectively. Then from the superposition
theory the output d'(n) corresponding to the input

vector x'(n) in (6) is given by

d (n)=dn)—aln)d (n—1) (7)

x T(n—1)x(n)
hx (n—1) 12

With a new input vector x'(n) and a rew desired

where a(n) and d'(0) = d(0).

output d' (n), a new error is defined as

em)=dn)—x"Tn)wn) ®)

Using (6), (7), and (8), the proposed update

equation to minimize ¢’ 2() is given by
win+1)=wn)+pe' (n)x'(n). 9

The proposed update equation in (9) can be

geometrically  interpreted by  establishing a
hyperplane:
Vin)=wlx'(n)w=d(n) (10

The above Gram-Schmidt procedure forms a new
hyperplane ¥'(n) out of ¥(n) and the proposed

algonithm in  (9) updates w(n) toward and
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perpendicular to a newly defined hyperplane ¥’ (n)
instead of ¥(n). The angle between ¥'(n) and
¥'(n—1) is equal to 90 ° and thus fast convergence
is achieved. Also we can obtain a normalized version
of the proposed algorithm by simply setting

p=v/llw@m)l?* 0O<y<1)
IV. Simulation Results

To evaluate the convergence properties of the
proposed method computer simulations are carried out
in the system identification configuration. For
comparison the normalized OGA® method and the
CG method are selected.

The system identification problem is to estimate
the impulse response of a unknown system. The
unknown system H(z) is represented by a moving
average (MA) model

K-1
H(z)= E hzF,
E=0
where
hT=[p,(n}) —1.0 05 05 —05 —0.8 0.3 0.1 —0.5].

To check both convergent and tracking capability a
time-varying component h,(n) is given by

b () = {1 if n.< 3000
0 14 0.5sin(27n/3000) otherwise.

The unknown system H(z) is driven by a correlated
zero mean signal z{n). The input signal z(n) is
generated by filtering Gaussian zero-mean white
noise through an autoregressive (AR) filter such that
the eigenspread has values between 1600 and 1700.
Also Gaussian zero-mean white noise v(n) with the
variance of 02 is added to the output of the
unknown system. Then the desired signal d{n) is
given by

K-1
dn)= kzohkx (n—k)+v(n).

For simulations, we assume that X = §

02 =10"% and o =0.1. Each simulation is carried

Norm squared parameter error
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Fig. 3. Performance comparison of the norm sguared
parameter error.
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Table 1. Computational complexity of the proposed

algorithm.,
OGA [4] CGl4]  {Proposed

Ni f
umber o 5K+2 | 2K+10K*3 | 5K+3

multiplications

out 50 times and averaged. Fig. 3 shows the learning
curves of the norm-squared parameter errors. From
the results, we can see the proposed algorithm
outperforms the normalized OGA(NOGA) in terms of
convergence speed and tracking capability. It is
almost as good as the CG method whose
computational load is prohibitive as shown in Table L

V. Conclusions

We have presented a new adaptive filtering
algorithm that makes the convergence rate much
improved even for a highly correlated input signal.
As we see in Fig. 3 and Table I, the fast
convergence of the CG method requires an extremely
large amount of computation, multiplications of
O(K?). On the other hand, the OGA method requires
multiplications of O(X) but its convergence speed is
very slow. The proposed method overcomes these
shortcomings of CG and OGA, resulting in much
improved convergence speed which is comparable to
CG, and computational cost as low as that of OGA.
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