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ABSTRACT

It is well-known that the convergence rate gets worse when
an input signal to an adaptive filter is correlated. In this
paper we propose a new adaptive filtering algorithm that
makes the convergence rate highly improved even for highly
correlated input signals. By introducing an orthogonal con-
straint between successive input signal vectors we overcome
the slow convergence problem caused by the correlated in-
put signal. Simulation results show that the proposed algo-
rithm yields highly improved convergence speed and excel-
lent tracking capability under both time-invariant and time-
varying environments, while keeping both computation and
implementation simple.

1. INTRODUCTION

Adaptive filtering has drawn much attention in recent years
due to the potential for estimating and tracking a chang-
ing environment. The least-mean square (LMS) algorithm
is certainly one of the most referenced adaptive filtering al-
gorithms due to its simplicity [1]. However, the correlated
nature of an input signal highly degrades the convergence
speed of LMS adaptive filters. In recent years, considerable
efforts have been spent in making the convergence rate of
LMS improved. Although the recursive least squares (RLS)
method shows superior convergence speed over the LMS
method, it is computationlly intensive and requires higher
storage over the LMS method. Fast RLS algorithms have
been developed but they have a tendency to become numer-
ically unstable [2]. These inherent limitations of the RLS
method make the use of the method limited.

As aresult, many variants of the LMS method have been
devised through simple modification or additional filtering
to improve the convergence rate [3). Proakis provided an
variant of the LMS method where gradient vectors are lin-
early filtered [4]. As another attempt for fast convergence,
a conjugate gradient (CG) method has been developed [5]-
[6]. Although the CG method has convergence properties

superior to those of LMS, the CG algorithm still requires
much higher computaional cost than the LMS method. Re-
cently the orthogoanl gradient adaptive (OGA) algorithm
which filters a gradient vector so that the current gradient
vector is orthogonal to the previous one was proposed [7].
Although the OGA algorithm is computationally simple as
much as the LMS method, the convergence speed is much
slower than the CG algorithm.

In this paper we propose a new adaptive filtering algo-
rithm based on successive input data orthogonaliation. The
proposed method shows the fast convegence speed compa-
rable with the CG algorithm while keeping computationally
simple as much as the OGA algorithm. The proposed algo-
rithm is motivated by the fact that the orthogonality between
the current input vector and the previous one is an impor-
tant factor for fast convergence. To give better insights we
describe this fact from a geometric perspective. The Gram-
Schmidt orthogonalization procedure is used to make the
orthogonal relation between input vectors. The simulation
results show that the proposed algorithm yields highly im-
proved convergence speed and tracking capability for both
time-invariant and time-variant enviornments.

Throughout the paper, the following notations are adopted

xT  Transpose of x

x|l Euclidean norm of x.

2. GEOMETRIC INTERPRETATION OF LMS

Let a discrete-time signal z(n) be the input to an adaptive
transversal filter and d(n) be the desired output. Then the
estimation error between the desired signal and the adaptive
filter output is given by

e(n) = d(n) — xT (n)w(n), 1)
where xT(n) = [z(n) z(n—1) +-- z(n — K +1)]isan

input vector and w¥ (n) = [wo(n) wi(n) --- wg_1(n))
is a tap-weight vector. The well-known LMS equation for
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Fig. 1. Geometric description of LMS update
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Fig. 2. Relation between convergence rate and acute angle

updating the weight vector is given by
w(n + 1) = w(n) + pe(n)x(n), 2

where p is a positive step-size. The LMS algorithm updates
w(n) so that e?(n) is minimized.

To see the behavior of the LMS method from a geomet-
ric perspective we define a hyperplane which consists of all
vectors w such thate(n) = 0, i.e.,

¥(n) = {w|xT(n)w = d(n)}.

Then the LMS algorithm moves w(n) toward the hyper-
plane ¥ (n) since 2(n) is smaller as w(n) is nearer to ¥ (n).
From linear algebraic theory [8], we know that all the per-
pendicular vectors to the hyperplane ¥(n) are parallel to
x(n). In addition, the direction vector for updating the weight
vector in (2) is parallel to x(n) since pe(n) is a scalar quan-
tity. Thus from a geometric perspective w(n) is updated
toward and perpendicular to the hyperplane ¥(n). This in-
terpretation is visually described in Fig. 1.

Based on the above geometric description, we explain
the relation between the convergence rate and the input vec-
tors. The key is in an acute angle between the current and
the previous hyperplane. To best visualize the result, con-
sider the case when K = 2. Then two hyperplanes are
defined as

¥(n—1) = {(wo, w1)|z(n-1wo+z(n—2)w1 = d(n-1)}
and
¥(n) = {{wo, w1 )|z(n)wy + z(n ~ Vwy = d(n)}.

In this case two hyperplanes are two straight lines. We as-
sume that the step-size is chosen so that the convergence
speed is maximized. Let 8(n) be the acute angle between
two hyperplanes ¥(n — 1) and ¥(n) and w* be the desired

solution, as illustrated in Fig. 2. Then it is easily derived

e e + 1) - wel)

cosf(n) = ?3)
™= Twim
Consider the case 8, (n) > 02(n) where
lwi(n +1) — w*|| :
cosb;(n) = ~————"— i=1,2.
) = Sy -
Then since cos 61 (n) < cosfq(n), it follow that
witn+1) - w*[| <fjwe(n+ ) —w|l. @

(4) means that w; (n + 1) is nearer to w* than wa(n + 1).
So we know that w(n + 1) is closer to w* as 6(n) increases
from 0° to 90°. So, for fast convergence it is desired that
6(n) is close to 90°.

Note that the acute angle 6(n) is equal to the angle be-
tween two vectors, x(n) and x{n — 1) which are perpendic-
ular to ¥(n) and ¥(n — 1), respectively. So, the angle can
be expressed as

xT(n - )x(n)

lIx(n = DIl - lIx(m)

using the inner product property of x(n) and x(n — 1).
This result holds for a higher dimensional vector space, i.e.,
K > 2. As can be seen in (5), the angle between two hy-
perplanes is determined by the inner product between two
input vectors at adjacent time. When x(n) is orthogonal to
x(n — 1), 6(n) becomes 90° and thus fast convergence is
achieved.

cosf(n) =

&)

3. CONVERGENCE ACCELERATION USING
SUCCESSIVE DATA ORTHOGONALIZATION

From Sec. 2 we know that the desired condition for fast
convergence is that x(n) is orthogonal to x(n — 1), ie.,
xT(n)x(n — 1) = 0. To meet the desired condition we
construct new orthogonal input signal vectors by using the
Gram-Schmidt orthogonalization procedure, which is a step-
by-step procedure for constructing an orthogonal basis from
an existing non-orthogonal basis [8].

Assume that the previous hyperplane and the current hy-
perplane are defined by

Vin-1)={wxTn-w=d(n-1)}
and
¥(n) = {wixT (n)w = d(n)},
respectively. According to the Gram-Schmidt procedure, a

new orthogonal input vector to x'(n — 1) is obtained by

Twa-op * Y ©
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where x'(0) = x(0). It can be easily seen that x'(n) is
orthogonal to x'(n ~ 1).

Consider two linear equations related with ¥'(n — 1)
and ¥(n):

xTn—1)w=d(n~1) )

and
xT (n)w = d(n). (8)
Let %E‘T—j}f’fﬁ;‘l be a(n). Multiplying a(n) to (7) and sub-

stracting from (8) lead to
xT (nyw —a(n)xT (n-1)w = d(n) ~a(n)d'(n-1), (9
Using (6), (9) reduces to
x'T(n)w = d(n) — a(n)d'(n - 1). (10)
From (10) a new desired output d’ (n) corresponding to x’(n)
is given by
d'(n) = d(n) — a(n)d'(n - 1), (11)

where d'(0) = d(0). Therefore a new hyperplane ¥'(n) is
established:

¥'(n) = {(wix(m)w = d'(n)}.

With a new input vector x' (n) and a new desired output
d'(n), a new error is defined as

e'(n) = d'(n) — x'T(n)w(n). 12)

Using (6), (11), and (12), the proposed update equation to
minimize e’?(n) is given by

w(n + 1) = w(n) + pe'(n)x'(n). (13)

From a geimetric perspective, the above Gram-Schmidt pro-
cedure forms a new hyperplane ¥'(n) from ¥(n) and the
proposed algorithm in (13) updates w(n) toward and per-
pendicular to a newly defined hyperplane ¥'(n).

Note that the OGA algorithm uses e(n) instead of &' (n)
in (13). The computational increase over the OGA algo-
rithm is related onty with d'(n) in (11). So one more multi-
plication and one more addition are required. We can obtain
a normalized version of the proposed algorithm by employ-
ing p = 1/lIx' (M.

4. SIMULATION RESULTS

To evaluate the convergence properties of the proposed method

computer simulations are carried out in the system identifi-
cation and the channel equalization problem. For the per-
formance comparison the normalized OGA method and the
CG method are selected:

Normalized QGA[{7]: w(n+ 1) =w(n) + N‘[Le 12(:5””5
CGI6] : refer to (6]
Proposed: w(n+1) = w(n)+ ﬂ‘l‘)eu;(:'j i

Fig. 3. System identification configuration

4.1. System Identification

The system identification problem is to estimate the impulse
response of a unknown system. The system identification
configuration is shwon in Fig. 3. The unknown system H (z)
is represented by a moving average (MA) model

K-1
H(z)= Y hpz ™%,
k=0
where

hT = [hy(n) ~1.0 0.5 0.5 —0.5 —0.8 0.3 0.1 ~0.5].

To check both convergent and tracking capability a time-
varying component ho{n) is given by

ho(n) = 1 if n < 3000
0" =1 140.5sin(27n/3000) otherwise.

The unknown system H(z) is driven by a correlated zero
mean signal z(n). The input signal z(n) is generated by fil-
tering Gaussian zero-mean white noise through autoregres-
sive (AR) filter such that the eigenspread could be set to
1600 and 1700. Also the Gaussian zero-mean white noise
v{n) with the variance of o2 is added to the output of the
unknown system. Then the desired signal d(n) is given by

K-1

din) = Z hrz(n — k) + v(n).

k=0

For simulations, we assume that K = 9, 02 = 10*, and
¢ = 0.1. Each simulation is carried out 50 times and av-
eraged. Fig. 4 shows the learning curves of the normed
squared parameter errors. From the results, we can see
the proposed algorithm outperforms the normalized OGA
(NOGA) in terms of convergence speed and tracking capa-
bility and is comparable with the CG method.

4.2. Channel Equalization

We evaluate the performance of the proposed algorithm in
the simulation of a transversal adaptive equalizer for equal-
izing the distortion introduced in a band-limited channel.
The channel equalization configuration is shown in Fig. 5.

_75_



a

10 . N " N L L .

6 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of samples

Fig. 4. Comparison of the norm squared parameter errors
(system identification)
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Fig. 5. Channel equalization configuration

The discrete-time channel model for the simulation is given
by

1
H(z) = Z hiz % =1+0927%
0

The input to the channel is a random sequence z(n) with
values {£1}. Then the input-output relation for the channel
has the form

K-1

ym) = 3 hea(n - k)
k=0

and the observed input to the equalizer is given by

r(n) = y(n) + v(n),

where v(n) is white measurement noise with variance o2
and is independent of the data z(n). Then the error signal
e(n) is given by

K-1

e(n) =d(n) = > wi(n)r(n ~ k).

k=0

For the simulations we assume that K = 50, 02 = 1074,
A =1,and g4 = 0.1. Each simulation is carried out 50 times
and averaged. As can be seen in Fig. 6, the proposed algo-
rithm outperforms the NOGA method and the CG method
in terms of the convergence rate.

L " N : N " L — i
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Numbar of samples

Fig. 6. Comparison of the mean sqaure errors (channel
equalization)

5. CONCULSIONS

‘We have presented a new adaptive filtering algorithm in a
simple manner that makes the convergence rate highly im-
proved even for a highly correlated input signal. By keeping
the input signal vectors orthogonal at adjacent time, the fast
convergence is achieved. The proposed algorithm has been
derived in a very general framework. So it can be easily
applicable to various applications such as channel equaliza-
tion, echo cancellation, and so on.
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