• 제목/요약/키워드: Invariant Manifold

검색결과 125건 처리시간 0.024초

편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정 (View-Invariant Body Pose Estimation based on Biased Manifold Learning)

  • 허동철;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.960-966
    • /
    • 2009
  • 다양체는 고차원 표본 데이터들 사이의 관계를 표현하기 위해 저차원 공간에서 생성된 구조로서 고차원 데이터인 영상과 3차원 인체 구성 데이터를 처리하는데 많이 사용되고 있다. 다양체 학습은 이러한 다양체를 생성하는 과정을 말한다. 그러나 다양체 학습을 이용한 포즈 추정은 학습하지 못한 실루엣 변화에 취약하다. 실루엣 변화는 2차원 영상에서 시점 변화, 포즈 변화, 사람 변화, 거리 변화, 잡영에 의해 발생되며, 이러한 변화를 하나의 다양체로 학습하기란 어렵다. 본 논문에서는 실루엣 변화를 유발하는 문제중 하나인 시점 변화에 대한 문제를 해결하고자 한다. 종래에 시점 변화에 상관 없이 포즈를 추정하는 방법에서는, 각 시점마다 다양체를 가지거나 사상 함수에서 시점에 관련한 요소들을 분리하석 별도의 다양체로 학습한다. 하지만 이러한 방법들은 복잡하고, 추정 과정에서 어떠한 시점의 다양체를통해 포즈를 추정할지 판단을 요구하며, 비교사 학습으로 인해 실루엣과 대응되는 3차원 인체 구성을 지정하기 어렵다. 본 논문에서는 시점 다양체, 포즈 다양체, 인체 구성 다양체를 편향된 다양체로 학습하여 사용하는 방법을 제안한다. 그리고 영상과 시점 다양체, 영상과 포즈 다양체, 인체 구성과 인체 구성 다양체, 포즈 다양체와 인체 구성 다양체 간에 사상 함수를 학습한다. 실험에서는 학습된 다양체와 사상 함수를 이용하여 24개의 시점에서 강인한 포즈 추정 결과를 보여주고 있다.

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • 대한수학회보
    • /
    • 제26권1호
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

CURVATURES ON THE ABBENA-THURSTON MANIFOLD

  • Han, Ju-Wan;Kim, Hyun Woong;Pyo, Yong-Soo
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.359-366
    • /
    • 2016
  • Let H be the 3-dimensional Heisenberg group, ($G=H{\times}S^1$, g) a product Riemannian manifold of Riemannian manifolds H and S with arbitrarily given left invariant Riemannian metrics respectively, and ${\Gamma}$ the discrete subgroup of G with integer entries. Then, on the Riemannian manifold ($M:=G/{\Gamma}$, ${\Pi}^*g=\bar{g}$), ${\Pi}:G{\rightarrow}G/{\Gamma}$, we evaluate the scalar curvature and the Ricci curvature.

LORENTZIAN ALMOST PARACONTACT MANIFOLDS AND THEIR SUBMANIFOLDS

  • Tripathi, Mukut-Mani;De, Uday-Chand
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권2호
    • /
    • pp.101-125
    • /
    • 2001
  • This is a survey article on almost Lorentzian paracontact manifolds. The study of Lorentsian almost paracontact manifolds was initiated by Matsumoto [On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151-l56]. Later on several authors studied Lorentzian almost paracontact manifolds and their different classes, viz. LP-Sasakian and LSP-Sasakian manifolds. Different types of submanifolds, for example invariant, semi-invariant and almost semi-invariant, of Lorentzian almost paracontact manifold have been studied. Here, we present a brief survey of results on Lorentzian almost paracontact manifolds with their different classes and their different kind of submanifolds.

  • PDF

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.