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It is well known that submanifolds of codimension 2 in an almost complex: 

manifold are not in general almost complex. On the other hand invariant 
submanifolds of codimension ‘ 2 ‘ in an almost complex manifold are also almost 
complex and invariant submanifolds of codimension 2 in a (normal) contact 

Riemannian manifold are so also [61 , [71. 

In this paper, we shal1 prove that invariant submanifolds of codimension 2 in 

a locaIly product Riemannian manifold are also 10caIly product Riemannian 
manifold. 

In S 1 we give definition of a locaIly product Riemannian manifold by the almost 
product structure tensOrs point of view. In S 2 we give induced structures on 

submanifolds of codimension 2 in our manifold by devices similar to [11. In S 3 
we prove that the invariant submanifolds of codimension 2 in our manifold is 

also locaIly product. In S 4 we show non-existence of invariant totaIly umbilical 

submanifold of codimension 2, of non-zero mean curvature. 

1. LocaIly product Riernannian rnanifolds. 

We shaIl now recall definition of locally product Riemannian manifold for 

the later use. On an (n+2)-dimensional Riemannian manifold M , if there exists‘ 

a tensor field F of type (1, 1) such that 

(1. 1) F2=I, 
(1. 2) G(F X , FY) =G(X, Y) , 
(1. 3) 17 xF=O, 

where 1 denotes the identity tensor of type (1, 1) and 17 the Riemannian connection 

determined by G, then the manifold M is called a local1y product Riemannian 

manifold and the tensor field F defined by (1. 1) is called an almost product 

structure. 

We see that the matrix (F) has eigenvalues +1 and -1, and assume that +1 
appears p times and -1 appears q times (so that p+q=n十2) among the eigenvalues 

of (F) , then we have 
(1. 4) trace F=p-q. 
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In this case, the locally product Riemannian manifold M is locally the product 
MPxMq of two manifolds. 

A tensor field φ of type (0, 2) defined by 

(1. 5) φ(X， Y) = G(F X , Y) , 
for any two vector fields X and Y is symmetric. i. e. , 

(1. 6) φ(X，Y) =φ(y， X). 

2. Submanifolds of codimension 2 in a IocaIly product Riemannian manifold. 

Let N be a submanifold of codimension 2 imbedded in an (n+2) dimensional 

locally product Riemannian manifold M with almost product structures (1", G). 

"Thus, if z. denotes the imbedding N • M and B the differential of i , then induced 

metric g on N is defined in term of the metric G on M by 

(2.1) g(X, Y) =G(BX, BY) 

for any tangent vector fields Xand Y on N. 

We assume that the normal bundle of N is orientable, that is, there exists two 
unit vector fields C and D normal to i(N) and mutually orthogonal, then we 

have 

(2.2) G(C, C)=l , G(C, D) =0, G(D, D)=l, G(BX, C)=O, G(BX, D)=O. 

It is easy to see ([lJ , [7J) that we can define a tensor field f of type (1, 1) , 

the vector fields E and A, 1-forms À. and μ， and scalar fields γ， s and t on N by 

(2.3) F BX =BfX +λ(X)C+μ(X)D， 

(2.~ FC=M+~+ill， 

(2.5) FD=M+sC+W. 

PROPOSITION 1. f , E , A, λ， μ， r, s, t saUsfy 

(2.6) /2 =1 -}"(~E-μ0A， λ.f= -rÀ-sμ， 

(2-7) fE= -rE-sA, λ(E) =1-r2-s2, 

(2.8) fA= -sE-tA, λ(A) = -s(r+ t), 

μ'f=-sλ -tμ， 

μ (E) = -s(r+t) , 

μ(A) =1-s2-t2. 

PROOF. Transforming again the both members of (2.3) by F , we have 

BX=PBX=B(f2+À(X)E+μ(X)A) + (fÀ(X) +rÀ(X) 十Sμ(X))C

+(1.μ(X)+sλ(X)+tμ(X))D. 

Comparing tangential and normal parts we obtain the results (2.6). Similarly 
<::omputing F2C and F2D, we have the relations (2.7) and (2.8) respectively. 

PROPOSITION 2. lf rt-s2휴0， then f is non-singμlar. 
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PROOF. Suppose that fX=O , then FBX=λ(X)C十μ(X)D， and hence 
BX= F2BX=B(λ(X)E+μ(X)A)+(rλ(X)+sμ(X))C+(sλ(X)+tμ(X))D， 

which yields λ(X)=O and μ(X) =0 for rt-s2~0. Since X is tangent to N and 

BX=O, then we have X=O. 

PROPOSITION 3. The tensor f de.껴~'nes an almost product strμcture on N zf aná 

only if r十t=O， r2+s2= 1. 

PROOF. If r+t=O and r2+s2=1, then from (2.7) and (2.8) we have λ(E)= 
μ(E)=O and λ(A)=μ(A)=O， from which we get E=A=O. Hence by (2.6) , f is 

an almost product structure on N. 

Conversely, if f is an almost product structure, then from (2. 6) we have E = 

A=O, and from (2.7) and (2.8) we obtain 

r2+s2=1, s(r+ t) =0, S2+t2= 1. 

If s=O, then from (2.6) we get λ.f=Iλ and tl.f=Iμ， from which f = I I. This 

contradicts the fact that f is a non-trivial almost product structure. Thus we 

have r+t=O and r2+s2= 1. 

PROPOSITION 4. 

(2.9) 

The induced metric g on N saHsfy 

g(X, Y) = g CfX ,/Y) +λ(X)λ(Y) 十μ(X)μ(Y)，

g(fX, Y) = g(X,/Y) , 

(2. 10) 

(2. 11) 

g(X， E)=λ(X) ， g(X， A)=μ(X) ， 

g(E, E)=1-r2-s2, g(E, A)=-s(r+t), g(A, A)=1-s2-t2. 

PROOF. g(X, y) =G(BX, BY) =G(F BX, F BY) 

=g(fX，/y) +λ(X)λ(Y)+μ(X)μ (Y)， 

g(X, E)=G(BX, BE) =G(BX, FC-rC-sD) =G(FBX, C)=λ(X) ， 

g(E, E) =G(BE, BE)=G(FC-rC-sD, FC-rC-sD) =1~r2-s2. 

Similarly, we have the remaining results. 

From (2. 11) we immediately obtain that the induced vectors E and A are non­

zero if and only if r2十s2~1 and S2+f2휴1 respectively. 

If we denote by the 17 the covariant differentiation with respect to G, then we 

have the equations of Gause-Weingarten 

(2. 12) CVBXB)Y=h(X, Y)C+k(X, Y)D, 

VBXC= -BHX +1(X)D, I7BxD= -BKX -1(X)C. 
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where h and k are the second fundamental forms, and H and K are the corres­
ponding Weingarten maps, and 1 is the third fundamental form. 

Since the enveloping manifold M is a locally product. taking account of (1. 3) 

we have 

VBxFBY=h(X, Y)BE+k(X, Y)BA+(h(X, Y)1'+k(X, Y)s)C 

+ (h(X, Y)s-k(X, Y) 1')D+FB(I7xY). 

ün the othere hand 

VBxFBY = VBx(BIY +λ(Y)C+μ(Y)D) 

=B((I7xf)Y - λ (Y)HX-μ(Y)KX+(Cf7xλ)Y +h(X, Y) -1(X)μ(Y))C 

+ ((l7xμ)Y+k(X， Y) 十I(X)λ(Y))D+À(17xY)C十μ(l7xY)D，

where 17 xY denotes the component of VBxBY tangent to N. Therefore, using (2.3) 

and comparing tangential and normal parts we have 

(2.13) 

(2.14) 

(2.15) 

(17 xj)Y = h(X, Y)E+k(X, Y)A+λ(Y)HX+μ(Y)KX， 

h(X,fY) = 1'h(X, Y) +sk(X, Y) - (17 xλ)(Y) 十I(X)μ(Y)，

k(X,fY) =sh(X, Y) 十tk(X， Y) - (17 xμ) (Y) -1(X)À(Y). 

The equation (2. 13) gives us an expression for the covariant derivative of 1, 
clearly N is totally geodesic then 1 is covariant constant. More genearlly we 
'prove 

PROPOSITION 5. Let N be a subman하'old 01 codimension 2 in M , zj 1'+t=O, 
r 2+s2=l, then 1 is cova1'iant constant. 

PROOF. 표 r+t=O 뻐d 1'2+s2=l, by virtue of (2.11) we have E=A=O, and from 
(2. 10) we have λ(X)=μ(X) =0. Thus we get 17 xl=O. 

3. Invariant submanifolds in a loeally produet Riemannian manifold. 

We now assume that the tangent space of the submanifold N of codimension 2 
in a locally product Riemannian manifold M is invariant under the action of the 
almost product structure tensor F of M , and such a submanifold an invariant 

submanifold. 

For an inv때a끄t snbmanifold N. we have 

(3.1) 

that is 

(3.2) 

FBX=BIX, 

λ=0， μ=0. 



lnvariant Submanifolds of Codimension 2 in a Locally Prodμct Riemannian Mαmfold 181 

in (2. 3). Hence from (2.7) and (2. 8) we get 

(3.3) r2+s2= 1, s(r+ t) =0, s2+t2=1, 

and from (2.11) we have E=A=O. 

We see easily that there occur oIÙy folIowing two cases. i. e. , case 1 and case 

n for an invariant submanifold N in a 10calIy product Riemannian manifold M. 

Case 1 ; s=O 때d r2=t2=1(rt>0). 

Substituting above into (2.6) , we have 

which imply that 
(3.4) 

λ-I= -J:. λ， μ-I= -J:. μ， 

1= -J:.1. 

In this case, the equation (2. 4) and (2. 5) can be written in the folIowing 
(3.5) FC= -J:. C, FD= -J:. D. (resp.) 

From (3.4) and (3.5) we get 

(3.6) F= -J:. I. 

This contradicts the fact that F is a non-trivial almost product structure over on 
M. 

Case n; r+t=O and r2十S2= 1.

In this case, from (2.11) we have E=A=O. and from (2.10) we get λ=μ=0. 
Threfore the submanifold N is an invariant. 

Thus we have 

THEOREM 6_ 1 n order that a subηwnz"fold N 01 codinumsion 2 in a locally product 

Riema微ja% %a%찌ld M be an 쩌νarz’ant， it is necessary and sullz'cient that t= -r, 
r2+s2 =1 in (2.4) and (2. 5). 

For an invariant submanifold N , by the Theorem 6, the equations (2.4) and 

(2. 5) can be written in the folIowing 

(3.7) FC=rC+sD, FD=sC-rD. (r2+s2=1) 

In this case, the transforms of C and D by F on the normal space at every point 

of N is a reflexion with respect to any line through the point. 

Next, since N is an invariant submanifold we have from (2.6) 

(3.8) /2=1, 
and from (2. 9) 

(3.9) 

from (2.13) 

(3.10) 

r 

g(X, Y)=g(IX,fY). 

Vxf=O. 
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Thus we see that an invariant submanifold of codimension 2 in a localIy product 

Riemannian manifold is also a localIy product. 

On the other hand, taking account of (3.8) , the matrix Cf) has ::t 1 as eigen­
values, and we assume that (/) has eigenvelue + 1 of multiplicity p' and eigenvalue 

-1 of multiplicity q', then we have 

(3. 11) trace / = p' - q’. 

Let X J, X 2, ... , X Il be a orthonormal local basis on N. Then n+2 vector fields 
BXJ, BX2, ... , BXIl , C, D are also orthonormal basis at every point of M , and 
from (3. 1) and (3.7) we have 

trace F = G(F BXi , BX，-) 十G(FC， C) 十G(FD， D)

=g(fXi， Xi) 十r-r

=trace /, 
from (1. 4) and (3. 11) we obtain 

p-q=þ’ -q/. 

Since the invariant submanifold N is of codimension 2 in a (n 十2) - dimensional 

manifold M , that is, p' 十q' =n, hence we have 
(3. 12) ψ’ =P-1， q'=q- 1. 

Thus we have 

THEOREM 7. The invariant submamjold N in a locaUy product Riemannian 

ηzαmjold M=MPxMq is a locally product Riemannian mamjold N=NP- 1 xNq-l 

with induced structures (f, g). 

4. lnvariant tota l1y umbilical submanifold in a locally product Riemannian 

manifold. 

We assume that the enveloping manifold M is a localIy product Riemannian 

manifold and the invariant submanifold N of codimension 2 imbedded in M is a 

totalIy umbilical. In this case, the second fundamental forms of N has the form 

(4.1) h(X, Y) = !ig (X, Y), k(X, Y) ='fig(X, Y ), 

where !i=(1 /n) trace h and 둥 = (l/n) trace k. 

For an invariant submanifold N , the equations (2.14) and (2.15) become 
respectively 

(4.2) 

(4.3) 

and from which 

Iz(X,fy) =rh(X, Y) +sk(X, Y) , 
k(X,fY) =sh(X, Y)-얘(X， Y) , 

(4.4). h(/X,fY) =h(X, Y) , k(fX ,fY) =k(X, Y). 
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Su bstituting (4. 1) 

(4.5) 

into the equations (4.2) and (4.3) respecti vely we bave 

ïig(X, f Y) = (깨 +s7i)g(X， Y) , 

from which we have 

(4 ‘ 6) 

7ig(X,fY) = (sn - r7i )g(X, Y) , 

(trace f) !i = n(1'!i +s7i), 

(tracef)7i= n(sJi - 1'7i), 

and taking use of 1'2+s2 = 1, we have 

(4.7) (trace 1)2(강2+P) = n2(Ji2 +동2). 

According to Theorem 7, trace 1 ~:tn， then (4.7) imply that ïi= 7i =O. 

Thus we haγe 

THEOREM 8. An z'nvarz'ant totally μmbilicα1 subman긴fold 01 codimensio1Z 2 z'n a 

locally product Rz'emannian manifold is a totally geodesic. 

1f Ji2十 7i2노0， that the z'nva1'iant submα11낀rold N hαs 1Z01Z-ze1'O mcan cu1'vatu1'e, then 

we have t1'ace 1= :t n. This cont1'adicts to Theo1'em 7. 

THEOREM 9. Let M be a locally p1'oduct Riemannz'α1Z manzfold, the1'e is 1Z0 totally 

umbz"lical inva1'iant sμbman찌ld of codimension 2 in M , 01 non-ze1'o mean cμ1'vatκ1'e 
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