INVARIANT SUBMANIFOLDS OF CODIMENSION 2 IN
A LOCALLY PRODUCT RIEMANNIAN MANIFOLD

By Yong-Bal Baik

It is well known that submanifolds of codimension 2 in an almost complex
manifold are not in general almost complex. On the other hand invariant
submanifolds of codimension 2 .in an almost complex manifold are also almost
complex and invariant submanifolds of codimension 2 in a (normal) contact
Riemannian manifold are so also [6], [7].

In this paper, we shall prove that invariant submanifolds of codimension 2 in

a locally product Riemannian manifold are also locally product Riemannian
manifold.

In 31 we give definition of a locally product Riemannian manifold by the almost.
product structure tensors point of view. In §2 we give induced structures on
submanifolds of codimension 2 in our manifold by devices similar to [1]. In §3
we prove that the invariant submanifolds of codimension 2 in our manifold is

also locally product. In §4 we show non-existence of invariant totally umbilical
submanifold of codimension 2, of non-zero mean curvature.

1. Locally producet Riemannian manifolds.

We shall now recall definition of locally product Riemannian manifold for

the later use. On an (#-+2)-dimensional Riemannian manifold M, if there exists.
a tensor field F' of type (1, 1) such that

(1. 1) F2=],
(1.2) G(FX, FY)=G(X, Y),
(1.3) 7 xF =0,

where [ denotes the identity tensor of type (1, 1) and |/ the Riemannian connection
determined by G, then the manifold M is called a locally product Riemannian
manifold and the tensor field F defined by (1.1) is called an almost product
structure.

We see that the matrix (F) has eigenvalues 41 and —1, and assume that +1

appears p times and —1 appears g times (so that p+g=#n+2) among the eigenvalues
of (F), then we have

(1. 4) trace F=p—q.
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In this case, the locally product Riemannian manifold M is locally the product
M?XM? of two manifolds.

A tensor field @ of type (0,2) defined by

(1.5) O(X,Y)=GFX,Y),
tor any two vector fields X and Y is symmetric. i.e.,
(1.6) (X, Y =0, X).

2. Submanifolds of codimension 2 in a locally product Riemannian manifold.

Let N be a submanifold of codimension 2 imbedded in an (#+2)—dimensional
locally product Riemannian manifold M with almost product structures (F,G).
“Thus, if 7 denotes the imbedding N—M and B the differential of 7, then induced
metric g on N 18 defined in term of the metric G on M by

(2.1) g(X,Y)=G(BX, BY)
for any tangent vector fields Xand ¥ on N.

We assume that the normal bundle of N is orientable, that is, there exists two
unit vector fields C and D normal to 7(N) and mutually orthogonal, then we
have

2.2) G, 0)=1, G, D)=0, G(D,D)=1, GBX,()=0, G(BX,D)=0.

It i1s easy to see ([1], [7]) that we can define a tensor field f of type (1,1),
the vector fields £ and A4, 1-forms A and g, and scalar fields 7,s and £ on N by

(2.3) FBX=BfX+A(X)C+u(X)D,
(2.4) FC=BE+rC-+sD,
(2.5) FD=BA4+sC+tD.

PROPOSITION 1. f,E,A, A, 1, 7,8,1 satisfy

(2.6) [2=1 - AQE — u®A, Aof=—7rA—syu, (e f=—SA—1L,
(2:7) fE=—rE—5sA, A(E)=1—7r2—s2, u(E)=—s(r+t),
(2:8) fA=—sE—tA, A(A) = —s(r+d), u(A)=1-—s>—¢2

PROOF. Transforming again the both members of (2.3) by F, we have
BX =F*BX =B(f*+A(X)E + (X)) A) + (fAX) +7A(X) +s11(X))C
+ (fu(X) +sA(X) +tu(X))D.
Comparing tangential and normal parts we obtain the results (2.6). Similarly
computing F2C and F32D, we have the relations (2.7) and (2.8) respectively.

PROPOSITION 2. If rt—s*x0, then f is non-singular.
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PROOF. Suppose that fX=0, then FBX=A(X)C+u(X)D, and hence
BX=F!BX=B(A(X)E+p(X)A)+ (rA(X) +spu(X))C+ (sA(X) +tu(X))D,
which vields A(X)=0 and p(X)=0 for 7f—s>=0. Since X is tangent to N and

BX =0, then we have X=0(.

PROPOSITION 3. The tensor f defines an almost product structure on N if and
only if r+it=0, r*4-s*=1.

PROOF. If -+¢=0 and 72+s?=1, then from (2.7) and (2.8) we have A(E)=
u(EY)=0 and A(A)=u(A)=0, from which we get E=A=0. Hence by (2.6), f is
an almost product structure on NN.

Conversely, if f is an almost product structure, then from (2.6) we have E—=
A=0, and from (2.7) and (2.8) we obtain

yet-s2=1, s(r+t) =0, s*4-{2=1.
If s=0, then from (2.6) we get A-f=+A and p-f=+ypu, from which f=+171. This

Th

contradicts the fact that f is a non-trivial almost product structure. Thus we
have r+¢{=0 and r%4-s*=1.

PROPOSITION 4. The tnduced metric g on N salisfy

(2.9) g(X,V)=g(UX, fY)+AX)AT) +uX)ud),
g(fX,Y)=g(X,fY),
(2.10) g(X,E)=A(X), gX, A)=pu(X),

(2.11) g(E,E)=1—7>—5% g(E,A)=—-s(r+1), g(A4A,A)=1—s"—¢

PROOF. g(X,Y)=G(BX,BY)=G(F'BX, FBY)
=g(fX, fY)+AXDAX) +uXDud),
g(X,E)=G(BX,BE)=G(BX,FC—-7C—sD)=G(FBX, C)=2(X),
g(E,E)=G(BE,BE)=G(FC—7C—sD, FC—vC—sD)=1=7r*—§~
Similarly, we have the rémaining results.

From (2.11) we immediately obtain that the induced vectors £ and A are non-
zero if and only if 72+s231 and s?4-#22¢1 respectively.

If we denote by the [/ the covariant differentiation with respect to &, then we
have the equations of Gause-Weingarten

(2.12) (7exB)Y =r(X,Y)C+E(X,Y)D,
pxC=—BHX+I1(X)D, sxD=—-BKX-I(X)C,
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where 2 and % are the second fundamental forms, and H and K are the corres-
ponding Weingarten maps, and / is the third fundamental form.

Since the enveloping manifold M is a locally product, taking account of (1.3)
we have

7exFBY =h(X,Y)BE+k(X,Y)BA+h(X,Y)r+k(X,Y)s)C
+ (X, Y)s—k(X,Y)r)D+FB(/xY).
On the othere hand
VexFBY =/ px(BfY + A(Y)C+pu(Y)D)

=B(Vxf)Y —"AQXD)HX —p(Y)KX+(VxADY +r(X,Y)—-I1(X)u(¥))C

H (W xwY +- (X, YD) HI(XDAX DDA xYIC+u(V xY) D,
where [/xY denotes the component of |[/zxBY tangent to N. Therefore, using (2.3)
and comparing tangential and normal parts we have

(2.13) Vx )Y =h(X,Y)E+E(X,Y)A+AY)HX+u(Y)KX,
(2.14) (X, fY)=rr(X,Y)+sk(X,Y)— xA)X)+HI(XOHul),
(2.15) R(X,fY)=sh(X,Y)+tk(X,Y)— W xp) Y —I(X)AXY).

The equation (2.13) gives us an expression for the covariant derivative of f,

clearly N is totally geodesic then f is covariant constant. More genearlly we
prove

PROPOSITION 5. Let N be a submanifold of codimension 2 in M, if r+t=0,
r:+s=1, then f is covariant constawi.

PROOF. If r-+¢=0 and 7%2+4s2=1, by virtue of (2.11) we have E=A=0, and from
(2.10) we have A(X)=p(X)=0. Thus we get ["xf=0.

3. Invariant submanifolds in a locally product Riemannian manifold.

We now assume that the tangent space of the submanifold N of codimension 2
in a locally product Riemannian manifold M is invariant under the action of the

almost product structure tensor F of M, and such a submanifold an invariant
submanifold.
For an invariant snibmanifold N, we have

(3.1) FBX=BfX,
that is
(3.2) - A=0,  p=0.
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in (2.3). Hence from (2.7) and (2.8) we get

(3.3) ri4-st=1,  s(r+t)=0, s?4-#2=1,
and from (2.11) we have E=A=0.

We see easily that there occur only following two cases. i.e., case I and case
I for an invariant submanifold N in a locally product Riemannian manifold M.

Case] ; s=0 and 72=#2=1(7t>0).
Substituting above into (2.6), we have

which imply that

(3. 4) f==1.

In this case, the equation (2.4) and (2.5) can be written in the following
(3.5) FC=-+C, FD=+D. (resp. )

From (3.4) and (3.5) we get
(3.6) F=+1.

This contradicts the fact that F is a non-trivial almost product structure over on
M.

Case II; 4+¢=0 and r24s2=1.

In this case, from (2.11) we have E=A4=0. and from (2.10) we get A=u=0.
Threfore the submanifold N is an invariant.

Thus we have

THEOREM 6. In order that a submanifold N of codimension 2 in a locally product

Riemannian manifold M be an invariant, it is necessary and sufficient that t=-—7,
7?2+s2=1 tn (2.4) and (2.5).

For an invariant submanifold N, by the Theorem 6, the equations (2.4) and
(2.5) can be written in the following

(3.7) FC=7C+sD, FD=sC—7rD. (r24+s2=1)
In this case, the transforms of C and D by F on the normal space at every point
of N is a reflexion with respect to any line through the point.

Next, since N is an invariant submanifold we have from (2.6)

(3.8) f2=1,
and from (2.9)

(3.9) g X, Y)=g(UX,fY),
from (2.13) - - .

(3. 10) I I/ xf=0.
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Thus we see that an invariant submanifold of codimension 2 in a locally product
Riemannian manifold is also a locally product.

On the other hand, taking account of (3.8), the matrix (f) has +1 as eigen-
values, and we assume that (f) has eigenvelue +1 of multiplicity ” and eigenvalue
—1 of multiplicity ¢°, then we have

(3.11) trace f=p'—¢q’ .

Let X, X5, ---, X, be a orthonormal local basis on N. Then z-+2 vector fields

BX,, BX,, -+, BX,, C, D are also orthonormal basis at every point of M, and
from (3.1) and (3.7) we have

trace F=G(FBX,;, BX)+G(FC,C)+G(FD, D)
=g(fX:;, X)+r—r
=trace f,
from (1.4) and (3.11) we obtain

p—q=1"—q.
Since the invariant submanifold N 1s of codimension 2 in a (#z+2)—dimensional

manifold M, that 1s, #'+¢ =n, hence we have
(3.12) P =p-1, qg =q—1.

Thus we have

THEOREM 7. The invariant submanifold N in a locally product Riemannian

manifold M=M?XM? is a locally product Riemanmnian manifold N=NPTXN?'
with induced stricctures (f, g).

4. Invariant totally umbilical submanifold in a locally produet Riemannian
manifold.

We assume that the enveloping manifold M is a locally preduct Riemannian
manifold and the invariant submanifold N of codimension 2 imbedded in M is @
totally umbilical. In this case, the second fundamental forms of N has the form

(4.1) (X, Y)=hg(X,Y), R(X,Y)=kg(X,Y),
where 2= (1/x#) trace & and 2=(1/%#) trace k.

IFor an 1invariant submanifold &, the equations (2.14) and (2.15) become
respectively

(4. 2) (X, fY)=ri(X,Y)+sk(X,Y),

(4. 3) R(X,fY)=sh(X,Y)—rk(X,Y),

and from which
(4.4) h(fX, fY)=h(X,Y), E(fX,fY)=k(X,Y).
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Substituting (4.1) into the equations (4.2) and (4.3) respectively we have
(4.5) ng( X, fY)=@h-+sB)g(X,Y),
kg (X, fY)=(sh—rk)g(X,Y),
from which we have
(4. 6) (trace f) h=n(rh-+sk),
(tracef)e=n(sh—rEk),
and taking use of 72+s2=1, we have
(4.7) (trace f)2(h2+E2) =n2(h2+E>).
According to Theorem 7, trace f ==+#, then (4.7) imply that Z=k=0.

Thus we have

THEOREM 8., An iuvariant totally wumbilical submawnifold of codimension 2 in a

locally product Riemanniarn manifold is a fotally geodesic.
If R2+R20, that the invariant submanifold N has non-zero mean curvature, then

we have trace f=+n. This contradicts to Theorem 7.

THEOREM 9. Let M be a locally product Riemanwnian manifold, there is wno totally
umbilical invariant submanifold of codimension 2 in M, of non-zero mearn curvature
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