INVARIANT SUBMANIFOLDS OF CODIMENSION 2 IN A LOCALLY PRODUCT RIEMANNIAN MANIFOLD

By Yong-Bai Baik

It is well known that submanifolds of codimension 2 in an almost complex manifold are not in general almost complex. On the other hand invariant submanifolds of codimension 2 in an almost complex manifold are also almost complex and invariant submanifolds of codimension 2 in a (normal) contact Riemannian manifold are so also [6], [7].

In this paper, we shall prove that invariant submanifolds of codimension 2 in a locally product Riemannian manifold are also locally product Riemannian. manifold.

In $\S 1$ we give definition of a locally product Riemannian manifold by the almost product structure tensors point of view. In $\S 2$ we give induced structures on submanifolds of codimension 2 in our manifold by devices similar to [1]. In $\S 3$ we prove that the invariant submanifolds of codimension 2 in our manifold is also locally product. In § 4 we show non-existence of invariant totally umbilical submanifold of codimension 2 , of non-zero mean curvature.

1. Locally product Riemannian manifolds.

We shall now recall definition of locally product Riemannian manifold for the later use. On an ($n+2$)-dimensional Riemannian manifold M, if there exists. a tensor field F of type (1,1) such that

$$
\begin{equation*}
F^{2}=I, \tag{1.1}
\end{equation*}
$$

$$
\begin{align*}
G(F X, F Y) & =G(X, Y), \tag{1.2}\\
\nabla_{X} F & =0, \tag{1.3}
\end{align*}
$$

where I denotes the identity tensor of type $(1,1)$ and ∇ the Riemannian connection determined by G, then the manifold M is called a locally product Riemannian manifold and the tensor field F defined by (1.1) is called an almost product structure.

We see that the matrix (F) has eigenvalues +1 and -1 , and assume that +1 appears p times and -1 appears q times (so that $p+q=n+2$) among the eigenvalues: of (F), then we have

$$
\begin{equation*}
\text { trace } F=p-q \tag{1.4}
\end{equation*}
$$

In this case, the locally product Riemannian manifold M is locally the product $M^{p} \times M^{q}$ of two manifolds.

A tensor field Φ of type (0,2) defined by

$$
\begin{equation*}
\Phi(X, Y)=G(F X, Y) \tag{1.5}
\end{equation*}
$$

for any two vector fields X and Y is symmetric. i.e.,

$$
\begin{equation*}
\Phi(X, Y)=\Phi(Y, X) \tag{1.6}
\end{equation*}
$$

2. Submanifolds of codimension 2 in a locally product Riemannian manifold.

Let N be a submanifold of codimension 2 imbedded in an ($n+2$)-dimensional locally product Riemannian manifold M with almost product structures (F, G). Thus, if i denotes the imbedding $N \rightarrow M$ and B the differential of i, then induced metric g on N is defined in term of the metric G on M by

$$
\begin{equation*}
g(X, Y)=G(B X, B Y) \tag{2.1}
\end{equation*}
$$

for any tangent vector fields X and Y on N.
We assume that the normal bundle of N is orientable, that is, there exists two unit vector fields C and D normal to $i(N)$ and mutually orthogonal, then we have
(2.2) $\quad G(C, C)=1, G(C, D)=0, G(D, D)=1, G(B X, C)=0, G(B X, D)=0$.

It is easy to see ([1], [7]) that we can define a tensor field f of type (1,1), the vector fields E and $A, 1$-forms λ and μ, and scalar fields r, s and t on N by

$$
\begin{gather*}
F B X=B f X+\lambda(X) C+\mu(X) D, \tag{2.3}\\
F C=B E+r C+s D, \tag{2.4}\\
F D=B A+s C+t D . \tag{2.5}
\end{gather*}
$$

PROPOSITION 1. $f, E, A, \lambda, \mu, r, s, t$ satisfy

$$
\begin{align*}
f^{2} & =I-\lambda \otimes E-\mu \otimes A, & \lambda \cdot f=-r \lambda-s \mu, & \mu \cdot f=-s \lambda-t \mu, \tag{2.6}\\
f E & =-r E-s A, & \lambda(E)=1-r^{2}-s^{2}, & \mu(E)=-s(r+t), \\
f A & =-s E-t A, & \lambda(A)=-s(r+t), & \mu(A)=1-s^{2}-t^{2} .
\end{align*}
$$

PROOF. Transforming again the both members of (2.3) by F, we have

$$
\begin{aligned}
B X=F^{2} B X & =B\left(f^{2}+\lambda(X) E+\mu(X) A\right)+(f \lambda(X)+r \lambda(X)+s \mu(X)) C \\
& +(f \mu(X)+s \lambda(X)+t \mu(X)) D .
\end{aligned}
$$

Comparing tangential and normal parts we obtain the results (2.6). Similarly computing $F^{2} C$ and $F^{2} D$, we have the relations (2.7) and (2.8) respectively.

PROPOSITION 2. If $r t-s^{2} \neq 0$, then f is non-singular.

PROOF. Suppose that $f X=0$, then $F B X=\lambda(X) C+\mu(X) D$, and hence

$$
B X=F^{2} B X=B(\lambda(X) E+\mu(X) A)+(r \lambda(X)+s \mu(X)) C+(s \lambda(X)+t \mu(X)) D,
$$

which yields $\lambda(X)=0$ and $\mu(X)=0$ for $r t-s^{2} \neq 0$. Since X is tangent to N and $B X=0$, then we have $X=0$.

PROPOSITION 3. The tensor f defines an almost product structure on N if and only if $r+t=0, r^{2}+s^{2}=1$.

PROOF. If $r+t=0$ and $r^{2}+s^{2}=1$, then from (2.7) and (2.8) we have $\lambda(E)=$ $\mu(E)=0$ and $\lambda(A)=\mu(A)=0$, from which we get $E=A=0$. Hence by (2.6), f is an almost product structure on N.
Conversely, if f is an almost product structure, then from (2.6) we have $E=$ $A=0$, and from (2.7) and (2.8) we obtain

$$
r^{2}+s^{2}=1, \quad s(r+t)=0, \quad s^{2}+t^{2}=1 .
$$

If $s=0$, then from (2.6) we get $\lambda \cdot f= \pm \lambda$ and $\mu \cdot f= \pm \mu$, from which $f= \pm I$. This contradicts the fact that f is a non-trivial almost product structure. Thus we have $r+t=0$ and $r^{2}+s^{2}=1$.

PROPOSITION 4. The induced metric g on N satisfy

$$
\begin{align*}
& g(X, Y)=g(f X, f Y)+\lambda(X) \lambda(Y)+\mu(X) \mu(Y), \tag{2.9}\\
& g(f X, Y)=g(X, f Y),
\end{align*}
$$

$$
\begin{equation*}
g(X, E)=\lambda(X), \quad g(X, A)=\mu(X) \tag{2.10}
\end{equation*}
$$

(2.11) $g(E, E)=1-r^{2}-s^{2}, \quad g(E, A)=-s(r+t), \quad g(A, A)=1-s^{2}-t^{2}$.

PROOF. $\quad g(X, Y)=G(B X, B Y)=G(F B X, F B Y)$

$$
=g(f X, f Y)+\lambda(X) \lambda(Y)+\mu(X) \mu(Y),
$$

$$
g(X, E)=G(B \bar{X}, B E)=G(B X, F C-r C-s D)=G(F B X, C)=\lambda(X),
$$

$$
g(E, E)=G(B E, B E)=G(F C-r C-s D, \quad F C-r C-s D)=1-r^{2}-s^{2} .
$$

Similarly, we have the remaining results.
From (2.11) we immediately obtain that the induced vectors E and A are nonzero if and only if $r^{2}+s^{2} \neq 1$ and $s^{2}+t^{2} \neq 1$ respectively.

If we denote by the $\tilde{\nabla}$ the covariant differentiation with respect to G, then we have the equations of Gause-Weingarten

$$
\begin{gather*}
\left(\widetilde{\nabla}_{B X} B\right) Y=h(X, Y) C+k(X, Y) D \tag{2.12}\\
\widetilde{\nabla}_{B X} C=-B H X+l(X) D, \quad \widetilde{\nabla}_{B X} D=-B K X-l(X) C
\end{gather*}
$$

where h and k are the second fundamental forms, and H and K are the corresponding Weingarten maps, and l is the third fundamental form.

Since the enveloping manifold M is a locally product, taking account of (1.3) we have

$$
\begin{aligned}
\tilde{\nabla}_{B X} F B Y & =h(X, Y) B E+k(X, Y) B A+(h(X, Y) r+k(X, Y) s) C \\
& +(h(X, Y) s-k(X, Y) r) D+F B\left(\nabla_{X} Y\right) .
\end{aligned}
$$

On the othere hand

$$
\begin{aligned}
\widetilde{\nabla}_{B X} F B Y & =\widetilde{\nabla}_{B X}(B f Y+\lambda(Y) C+\mu(Y) D) \\
& =B\left(\left(\nabla_{X} f\right) Y-\lambda(Y) H X-\mu(Y) K X+\left(\left(\nabla_{X} \lambda\right) Y+h(X, Y)-l(X) \mu(Y)\right) C\right. \\
& +\left(\left(\nabla_{X} \mu\right) Y+k(X, Y)+l(X) \lambda(Y)\right) D+\lambda\left(\nabla_{X} Y\right) C+\mu\left(\nabla_{X} Y\right) D,
\end{aligned}
$$

where $\nabla_{X} Y$ denotes the component of $\widetilde{\nabla}_{B X} B Y$ tangent to N. Therefore, using (2.3) and comparing tangential and normal parts we have

$$
\begin{align*}
& \left(\nabla_{X} f\right) Y=h(X, Y) E+k(X, Y) A+\lambda(Y) H X+\mu(Y) K X, \tag{2.13}\\
& h(X, f Y)=\operatorname{rh}(X, Y)+\operatorname{sk}(X, Y)-\left(\nabla_{X} \lambda\right)(Y)+l(X) \mu(Y), \tag{2.14}\\
& k(X, f Y)=\operatorname{sh}(X, Y)+\operatorname{tk}(X, Y)-\left(\nabla_{X} \mu\right)(Y)-l(X) \lambda(Y) . \tag{2.15}
\end{align*}
$$

The equation (2.13) gives us an expression for the covariant derivative of f, clearly N is totally geodesic then f is covariant constant. More genearlly we prove

PROPOSITION 5. Let N be a submanifold of codimension 2 in M, if $r+t=0$, $r^{2}+s^{2}=1$, then f is covariant constant.

PROOF. If $r+t=0$ and $r^{2}+s^{2}=1$, by virtue of (2.11) we have $E=A=0$, and from (2.10) we have $\lambda(X)=\mu(X)=0$. Thus we get $\nabla_{x} f=0$.

3. Invariant submanifolds in a locally product Riemannian manifold.

We now assume that the tangent space of the submanifold N of codimension 2 in a locally product Riemannian manifold M is invariant under the action of the almost product structure tensor F of M, and such a submanifold an invariant submanifold.
For an invariant snbmanifold N, we have

$$
\begin{equation*}
F B X=B f X, \tag{3.1}
\end{equation*}
$$

that is

$$
\begin{equation*}
\lambda=0, \quad \mu=0 . \tag{3.2}
\end{equation*}
$$

in (2.3). Hence from (2.7) and (2.8) we get

$$
\begin{equation*}
r^{2}+s^{2}=1, \quad s(r+t)=0, \quad s^{2}+t^{2}=1 \tag{3.3}
\end{equation*}
$$

and from (2.11) we have $E=A=0$.
We see easily that there occur only following two cases. i. e., case I and case II for an invariant submanifold N in a locally product Riemannian manifold M.

Case I ; $s=0$ and $r^{2}=t^{2}=1(r t>0)$.
Substituting above into (2.6), we have

$$
\lambda \cdot f= \pm \lambda, \quad \mu \cdot f= \pm \mu
$$

which imply that
(3.4)

$$
f= \pm I
$$

In this case, the equation (2.4) and (2.5) can be written in the following

$$
\begin{equation*}
F C= \pm C, \quad F D= \pm D . \quad \text { (resp.) } \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we get

$$
\begin{equation*}
F= \pm I \tag{3.6}
\end{equation*}
$$

This contradicts the fact that F is a non-trivial almost product structure over on M.

Case II ; $r+t=0$ and $r^{2}+s^{2}=1$.
In this case, from (2.11) we have $E=A=0$. and from (2.10) we get $\lambda=\mu=0$. Threfore the submanifold N is an invariant.

Thus we have

THEOREM 6. In order that a submanifold N of codimension 2 in a locally product Riemannian manifold M be an invariant, it is necessary and sufficient that $t=-r$, $r^{2}+s^{2}=1$ in (2.4) and (2.5).

For an invariant submanifold N, by the Theorem 6, the equations (2.4) and (2.5) can be written in the following

$$
\begin{equation*}
F C=r C+s D, \quad F D=s C-r D . \quad\left(r^{2}+s^{2}=1\right) \tag{3.7}
\end{equation*}
$$

In this case, the transforms of C and D by F on the normal space at every point of N is a reflexion with respect to any line through the point.

Next, since N is an invariant submanifold we have from (2.6)
(3.8)

$$
f^{2}=I
$$

and from (2.9)

$$
\begin{equation*}
g(X, Y)=g(f X, f Y) \tag{3.9}
\end{equation*}
$$

from (2.13)

$$
\begin{equation*}
\nabla_{X} f=0 \tag{3.10}
\end{equation*}
$$

Thus we see that an invariant submanifold of codimension 2 in a locally product Riemannian manifold is also a locally product.

On the other hand, taking account of (3.8), the matrix (f) has ± 1 as eigenvalues, and we assume that (f) has eigenvelue +1 of multiplicity p^{\prime} and eigenvalue -1 of multiplicity q^{\prime}, then we have
trace $f=p^{\prime}-q^{\prime}$.
Let $X_{1}, X_{2}, \cdots, X_{n}$ be a orthonormal local basis on N. Then $n+2$ vector fields $B X_{1}, B X_{2}, \cdots, B X_{n}, C, D$ are also orthonormal basis at every point of M, and from (3.1) and (3.7) we have

$$
\text { trace } \begin{aligned}
F & =G\left(F B X_{i}, B X_{i}\right)+G(F C, C)+G(F D, D) \\
& =g\left(f X_{i}, X_{i}\right)+r-r \\
& =\operatorname{trace} f,
\end{aligned}
$$

from (1.4) and (3.11) we obtain

$$
p-q=t^{\prime}-q^{\prime} .
$$

Since the invariant submanifold N is of codimension 2 in a ($n+2$)-dimensional manifold M, that is, $p^{\prime}+q^{\prime}=n$, hence we have

$$
\begin{equation*}
p^{\prime}=p-1, \quad q^{\prime}=q-1 \tag{3.12}
\end{equation*}
$$

Thus we have
THEOREM 7. The invariant submanifold N in a locally product Riemannian manifold $M=M^{p} \times M^{q}$ is a locally product Riemannian manifold $N=N^{p-1} \times N^{q-1}$ with induced structures (f, g).
4. Invariant totally umbilical submanifold in a locally product Riemannian manifold.

We assume that the enveloping manifold M is a locally product Riemannian manifold and the invariant submanifold N of codimension 2 imbedded in M is a totally umbilical. In this case, the second fundamental forms of N has the form

$$
\begin{equation*}
h(X, Y)=\bar{h} g(X, Y), \quad k(X, Y)=\hbar g(X, Y) \tag{4.1}
\end{equation*}
$$

where $\bar{h}=(1 / n)$ trace h and $\bar{k}=(1 / n)$ trace k.
For an invariant submanifold N, the equations (2.14) and (2.15) become respectively

$$
\begin{align*}
& h(X, f Y)=r h(X, Y)+\operatorname{sk}(X, Y), \tag{4.2}\\
& k(X, f Y)=\operatorname{sh}(X, Y)-r k(X, Y) \tag{4.3}
\end{align*}
$$

and from which

$$
\begin{equation*}
h(f X, f Y)=h(X, Y), \quad k(f X, f Y)=k(X, Y) \tag{4.4}
\end{equation*}
$$

Invariant Submanifolds of Codimension 2 in a Locally Product Riemannian Manifold 183

Substituting (4.1) into the equations (4.2) and (4.3) respectively we have

$$
\begin{align*}
& \bar{h} g(X, f Y)=(r \bar{h}+s \bar{k}) g(X, Y), \tag{4.5}\\
& \bar{k} g(X, f Y)=(s \bar{\hbar}-r \bar{k}) g(X, Y),
\end{align*}
$$

from which we have

$$
\begin{align*}
& (\text { trace } f) \bar{k}=n(r \bar{h}+s \bar{k}), \tag{4.6}\\
& (\text { trace } f) \bar{k}=n(s \bar{h}-r \bar{k}),
\end{align*}
$$

and taking use of $r^{2}+s^{2}=1$, we have

$$
\begin{equation*}
(\operatorname{trace} f)^{2}\left(\bar{h}^{2}+\bar{k}^{2}\right)=n^{2}\left(\bar{h}^{2}+\bar{k}^{2}\right) . \tag{4.7}
\end{equation*}
$$

According to Theorem 7, trace $f \neq \pm n$, then (4.7) imply that $\bar{h}=\bar{k}=0$.
Thus we have
THEOREM 8. An invariant totally umbilical submanifold of codimension 2 in a locally product Riemannian manifold is a totally geodesic.

If $\bar{\hbar}^{2}+\bar{\hbar}^{2} \neq 0$, that the invariant submanifold N has non-zero mean curvature, then we have trace $f= \pm n$. This contradicts to Theorem 7 .

THEOREM 9. Let M be a locally product Riemannian manifold, there is no totally umbilical invariant submanifold of codimension 2 in M, of non-zero mean curvature

Pusan University
Pusan, Korea

BIBLIOGRAPHY

[1] D.E. Blair, G.D. Ludden and K. Yano, Induced structures on submanifolds. Kōdai Math. Semi. Rep. 22(1970). 188-198.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry volume II. Interscience Tracts, New York, 1969.
[3] M. Okumura, Totally umbilical hypersurfaces of a losally product Riemannian manifold. Kōdai Semi. Rep. 19(1967), 35~42.
[4] B. Smyth, Differential geometry of complex hypersurfaces. Ann. of Math. 85(1967), 246-266.
[5] S. Tachibana, Some theorems on locally product Riemannian manifold. Tôhoku Math. Journ. 12(1960), 281-292.
[6] K. Yano and S. Ishihara. Invariant submanifolds in a almost contact manifold. Kōdai Math. Semi. Rep. 21 (1969) 350-364.
[7] K. Yano and S. Ishihara, On a problem of Nomizu-Smyth on a normal contact Riemannian manifold. J. Differential Geometry. 3(1969) 45-58.
[8] K. Yano, Differential geometry on complex and almost complex spaçes. Pergamon Press (1955).

