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INVARIANT SUBMANIFOLDS OF A MANIFOLD
WITH QUASI-NORMAL (f, g,u, v, 1) -STRUCTURE

By JAE Kyu Lim AnND U-HaNG K1

Introduction

Yano and Okumura [3] have recently introduced the so-called (f, g,u, v, A) -structure
‘in an even-dimensional manifold and studied invariant submanifolds of a manifold with
normal (f, g, %, v, A) -structure [4], [5].

Kubo [1] also studied invariant submanifolds of codimension 2 of a manifold with
(f, g, u, v, A) —structure.

The purpose of the present paper is to study invariant submanifolds of a manifold
with quasi-normal (f, g,#, v, A} —structure.

We state in §1 some known results for an (f, g, %, v, i) —structure and recall invariant
.submanifolds of a manifold with such structure.

In 82 and 3, we study odd-dimensional invariant submanifolds of a manifold with
-quasi-normal (f, g, u, v, A) —structure.

§1. Invariant submanifolds of a manifold with (7, g, u, v, i) -structare.

Let M be a differentiable manifold with an (f, g, %, v, 3) —structure, that is, a differen-
‘tiable manifold endowed with a tensor field f of type (1,1), a Riemannian metric g,
two 1-forms z and v and a function A satisfying

fifd=—0 tupt+opt,
Srfigaw=gii—u;—0ivy
‘(1- 1) utfifzi‘vi’ Situt=— vk,
vfif=—1luj, flv'=lut,
wat=vpt=1—22, uv'=0,
J& gi, w;, v; and A being respectively components of f,g,u,v and 1 with respect
to a local coordinate system, #* and v* being defined by
=g and vi=guv*
respectively, where here and in the sequel the indices &, 4, j, *-- run over the range {1,
2,-+,2m}, It is known that such a manifold is even-dimensional.
If we put fi;=fgy;, we can easily see that fj; is skew-symmetric.
We put
(1.2) Sit=Nj+ 7~V ;) ut+ (70— 7)) o,

Nj# denoting the Nijenhuis tensor formed with fi* and P7; the operator of covariant
differentiation with respect to Christoffel symbols {;*} formed with gj. If S;? vanish-
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es, we say that the (f, g,#,v, ) -structure is normal.

The (f, g, u, v, A) -structure is said to be quasi-normal if it satisfies
(1.3) Tiw=S8imn— (fitfun—fifeir) =0,
where Sjn=guwSi’, Sfin=Vifin+V:fsi+Vsfis

Yano and one of the present authors proved the following two theorems [2]:

THEOREM 1.1. In a manifold with quasi-normal (f, g,u,v, A)-structure, we hatc
(1.4) FiVwfa—FiVnfii=uilV wy— i sun+0ill 04— 0 ;05

THEOREM 1.2. Let M be a complete manifold with normal (or quasi-normal) (f,g,.
u, v, A) -structure satisfying -

Fivi—Vwi=2fi
or equivalently
VitV ui=—2c28;,
¢ being non-zero constant. If the function 2(1~32) does not vanish almost everywhere-
and dim M>2, then M is isometric with an even-dimensional sphere.

We consider a submanifold N of M represented by z*=z*(y?) and put B, =0,z",
0,=0/0y*, where here and throughout the paper the indices @, 5,¢,d,¢ Tun over the-
range {1,2,+-,n}, n<2m.

The induced Riemannian metric is given by
(1.5) ga=g;:B/By.

We denote by C,* 2m—n mutually orthogonal unit normals to N. Then equations of Gauss.
and those of Weingarten are respectively

(1.6) VByt=3% k. Ch

and

(1.7) FCh=—h Br+3,0..,Ch,
where

(1- 8) 14 cBbh=acBbh + {ihi} B/ Bbi“ {:“b} B}

is the Van der Waerden-Borotolotti covariant differentiation of B,*, {2} being Christoffel
symbols formed with g,
(1.9 7 Cr=a.Cr+ {#}B/C/,
ke components of second fundamental tensors with respect to normals C.%, A%, =hu4.8""
and [, components of the third fundamental tensor with respect to normals C.*

We assume that the submanifold N of M is f-invariant, that is, the transform of a_
vector tangent to N by the linear transformation f is always tangent to N:

(1- 10) f ithi=f baBahv
f® being a tensor field of type (1,1) of N. This shows that
(1- 11) f ithika=0.

Thus, we put
(1- 12) f ithi=Zyr:yCyh:
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from which,

(1.13) Tey™= " Tyxe

We put

(1.14) =B u*+3,a.Ct,
(1.15) =B i+ 8.C.H,

u® and v* being vector fields of N, «. and B, being functions of N.
From (1.1), (1.10), (1.12), (1.14) and (1.15), we find
(1.16) Foif & =—0y" +uyu® +vy0°,
(1.17) S '8 a=8a—utty— 004
{1.18) ftub=—2%,  fyovt=2us,
{1.19) upt=1—2-3ar v=1—1-3,87
(1.20) u 0% =3 10 f,
(1.21) gty + B0y =0,
(1.22) 2T ey ya = Oxat @0t 8,8,
(1.23) Zxrxya:::_;i‘sy’ Zxr.zylgx:'zay-
We also have from (1.10), fi;B/B,'=f.g.. Thus putting f.‘g.,=f., we see that f,,
is skew-symmetric.
It will be easily verified that, for invariant submanifold N, we have

(1 24) Niithijiztfs f]tbaBa s
Tf. f1.° being the Nijenhuis tensor formed with f,°.
Since

(7 ju;—V ;) B/By' =V (:By') —u7 By’ ~ 7y (u;B4) ~u;V B/,
that is,
(7 ju;—V ;) B By' =V aty— Ve,
from which, using (1.14),

(1- 25) (Vjui—Viuj) uthiji= (chb_Vbu;) uaBah+Zxax (chb'—Vbuc) th-
Similarly we can prove that
(1- 26) (Vjvi_Vivj) 'vthijis (chb'——vac) '(JaBa’l + Zxﬂx (chmebvc) th'

On the other hand, denoting p*=g*p, and f;*=g"f;,, we can write
ft;h*—‘V,ﬂh~V;ft"+Vhﬂ;,
from which, using (1.10) and (1.11),
FAfdBIBY =f 2 (W fr—Vift+ 7 ) BBy =f W o o' B) =7y ( fo2B) + P f o}

because of VB =P By

If we take account of (1.6) and (1.16), then the last equation becomes
(L.27)  fifutBIBy'=F fu* B+ fefs 2 ReiC it — (— 0.6 +uut +v,0°) Tk .C A,
where fu=g*foces  Sfore=VeSoetVsSecet Ve S s

Taking the skew-symmetric part of (1.27) in indices & and ¢, we find
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(1.28) (fAfd—FifiY BIByi=(f i fu’— Fo' o) B+ 2. { (wyu® +0pv°) B
— (' +v.0°)V by} C.1
From (1.24), (1.25), (1.26) and (1.28), we have
(1.29) {S;h— (fiful— FifeV Y BIBi =L f, f1o®+ (P ats— Vo) uo+ (7 05— Vo) 0°
— (£t = fo o)} B LA Pty —Vst) ot (70— V30.) Bt e (2 +030°)
— Ry (et +o0°) } C.5.
It is known that [5]

THEOREM 1.3. Let N be an invariant submanifold of a manifold with (f, g, u, v, A)-
structure. If there exists a point P of N such that X does not vanish at P, then the
submanifold N is even-dimensional. If 2 vanishes identically on N, then N is odd-
dimensional.

Equations (1.16)—(1.20) show that a necessary and sufficient condition £;°, g.s, %5, Vs
and 2 to define an (f, g,#, v, A) -structure is that a,=0, B,=0, that is, the vectors u*
and o* are always tangent to the submanifold M.

Taking account of (1.29) and Theorem 1.3, we have

PROPOSITION 1.4. Let M be a dif ferentiable manifold with quasi-normal (f, g, u,v, A) -
structure such that 350 almost every where along N and w* and v* are always tangent
to N. Then, the even-dimensional submanifold N admits also a quasi-normal (f,g,u,
v, A) -structure.

§2. Odd-dimensional invariant submanifolds of a manifold with quasi-normal
(f, g,u, v, 2) -structure.

In this section we consider 1 vanishes identically on the submanifold N. Then N is
odd-dimensional because of Theorem 1. 3.
In this case we have from (1.16)-{1.20),

(2.1) Foof 2= —0p° tu® +v,0°,
(2.2) J3° 8 ca=8pe— Uptt,— 03,
(2.3 frut=0, fi*v*=0,
(2.4) wur=1—Y % vot=1—3.82
(2.5) 4 == 300

From (1.21) we find
(2.6) (ea.?) 2+ (eas8:) v,=0
and
2.7) (eaB.) us+ (2.8.%) v,=0,
from which,
(2.9) (Zea?) wa® + (a8 0" =0,

or, using (2.4) and (2.5),
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Similarly, we have
{2.10) (0288 2+ (XaaBa) =208
We can easily see that Y..a.% Y.8.° are globally defined functions on N [5]
We put
={P&N|T,a,?#0}, Na={PEN|L.8, *0}.

Then N,, N: are open in N and satisfy N, Ns=N, because of the fact that N is odd-
dimensional.

In N,, we find, from (2.6)

—— Zza.\:ﬁx
(2. 11) ub Zxa,, by

from which, using (2.9),

(2.12) U+ vt = < —x—v»v
In N;, we find, from (2.7)
(2.13) vy=— Zzaﬁﬁz w“,
from which,
ubu"+vbv"——zxﬁz upte”

because of (2.10).
Now we define a 1-form 7, on N in the following way: in®N, we put

_ 1
(2.14) 7@ = _‘/—Z:——vab
and in Ng
5 -1
(2.15) 7% )Q_\/E,B;Z Uy.
In NN Ng we find, from (2.11) and (2.13)
(2.16) (Zh.B:) 2= (eat) (.55

f 3.0.8,=0 in N,(1Ng, from (2.11) and (2.13), we have =0, »*=0. This shows
that N is even-dimensional. So, in N.[1Ng 3 .a.8. has no zero point. Thus we may
assume that

(2.17) 25:08:>0.
Therefore, in N,[1Ns, we have
1S ~ B Y2
i v e, e
because of (2.13), (2.16) and (2.17). Hence, 7, is a well defined 1-form on N.
Computing #u®+v,v°, we find
(2.18) U+ 0 =1 %"
and consequently, (2.1) and (2.3) give

b
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fefe=—8+nn" fi'n"=0,
from which,
—7*+ (7s7°) 7°=0,
that is, pp’=1.
Thus the structure defined by (32, g.s, 7)is an almost contact metric structure, that is,
fife=—a+nne,

(2- 19) fcefbdged:gcb_ﬂc'r]b:
fba”a=0’ fba77b=0,
7a7°=1,

where 7, is the components of the 1-form » and »*=y,g%".

Equations (2.14), (2.15) and the last equation of (2.19) say that v,v*=3 .«.% in N,
and that uw®=).8.2 in Ns.

Now we define @ and § by a?=3.a.% p>=2.3% then they are globally defined
functions on N and we can put
(2. 20) uw'=—Fyp,, v=ay
because, when o or 3 vanishes, v* or #® vanishes.

From (2.18), (2.20) and 7.°=1, we find
2.21) a’?+p=1.

We get from (2.20)

(P — Ve w6+ (V0o —V5ve) v*=F2 (P cpy— V) v° +a® (W epp— V) 7
+ {7 B ms— (7:8) e} B+ { 7.a) s — (Pact) n} e’

or, using {2.21),
(2.22) (Fats—Fsur) ue -+ (P 05— Vove) v = (Vo — 7 ym) 7°-

If the (f, &, 4 v, 4) -structure of the ambient manifold is quasi-normal, we have from
(1.29), (2.18) and (2.22)

(2- 23) [.ﬂ f]cba+ (chb—Vbnc) 7]a _fcefeba +fbefeca=0
and
(2- 24) (chb - Vbuc) [+ + (chb - vac) ‘Bx + (nbhcex - nchbex) ﬂezo'

Transvecting (1.4) with B7B;'B,* and taking account of (2.1), we find
f£Bt (Vo fii) B —f* Bt (7o f2j) BS
=, (Vyti3) B*—tt, (7 04) B> +v, (Vy04) B —, (7 .04) B,
or, using (1.6), (1.11), (1.14) and (1.15),
feV o (BB} — [iV o f1;Be!BS) =4V sta— tV i+ 0,7 50,04V 0,
—#u4,7, B +uy,V Bt — 0,047 B, +v0,07 B,b,
that is,
SVl o= SsV oS cc=uF stta— sl s+ 0740, — 07 00— 820 Ry
F 02 0P ae— Ve D BePtar + 02 xB ok s

or, again
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Tl Fefes) —2f oV o f ot =0V stta— el b+ 05 50— V4l 04
by virtue of (1.21), or, using (2.19),
(2. 25) Val—=ga+nem) =2 aff) fo=uF stts— sl s+ 07 50a— 0 e
Substituting (2.20) into the right hand member of (2.25) and using (2.21), we

obtain

(2.26) 2o f) feor=7cWanp—Fs%a) + 74 (Fare + P ea) -
Transvecting (2.26) with »* and using (2.19), we find

(2.27) =7 (PP s00) +V e+ P 9a=0,

from which, transvecting with ¢, % ,,.=0. Thus (2.27) becomes

(2.28) VetV en.=0,

that is, »? is a Killing vector field.
Using (2.28), (2.26) can be written as
(2.29) Fofe) fer=7.cF ans-
Transvecting (2.29) with f,* and using (2.19), we get
(Zea— 1) Vo f =0 S oV atye
-and consequently
(2.30) Vo= 00" =0 f) P are-
Thus we have
THEOREM 2.1. Let N be an odd-dimensional invariant submanifold of a manifold with

quasi-normal (f, g,u,v, &) —structure. Then the submanifold N admits an almost contact
metric structure (fi° g 7s) suchk that v° is a Killing vector field and satisfies (2.30).

§3. Odd-dimensional invariant submanifeld of a manifold with (7, g, u, v, A)-
structure satisfying p,v,—Vv,=2pf .
We first prove
THEOREM 3.1. An odd-dimensional invariant submanifold N (dim N>3) of a manifold
‘with quasi-normal (f, g, u, v, A) -structure satisfying
(3.1) Vo~V =20fi
o being non-zero differentiable function, admits a Sasakian structure.
Proof. Transvecting (3.1) with B/B,’, we find
(3- 2) chb_vac;—szcb'
Substituting (3.2) into (2.24), we obtain
(3. 3) (chb"'Vbuc) ax+2pﬁxfcb+ (thcex“—nchbex) 77‘209
from which, transvecting 7?,
(3- 4) 77b (chb_Vbuc) a:+hctz7]e - (hbevane) xc:0~

Suppose that there exists a point P at which «{(P) =0, then a.(P)=0 for all z.
<Consequently we have at P
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o= (Pyes™7®) 7ee
Thus (3.3) implies that 8. (P)=0 and this, together with (1.22), shows that the:
submanifold N is even-dimensional. Therefore, « is non-zero.
If we substitute v,=ay; into (3.2), we get

(3.5) 2a(Zens) + (Pea) o — (Vo) 9.=20F
by virtue of (2.28), from which, transvecting »?,

(3.6) Va=An,

where we have put A=7°V,«. Thus (3.5) becomes

(3.7) ol me=pfcs-

Differentiating (3.6) covariantly, we find
VW a=Ary .+ (V,A) %
from which,
(3.8) AWe.—Vem) + (FsA) 5.~ (F.A) 7:=0.
Transvecting (3.8) with f* and using (3.7), we have (n—1)A=0 which, together
with (3.6), implies that 7.@=0. Thus @ is non-zero constant. '
Substituting (3.7) into (2.30) and using (2.19), we find
(3.9) aV o f =P (De&saNs&ea) »
from which, af,;=0. Since @ iIs non-zero constant, we have f,.;=0.
We have from (3.7)
a (Vo —V0e) =20f -
Differentiating the last equation covariantly, we find
Vol s~V F 57e) =20V o fer2f ¥ o>
from which, using Ricci identity and f,,=0,

(3. 10) fcbVap+fbach+fﬂc7bp:0'
Transvecting (3.10) with 7*, we get
(3.11) (r—1) 7*7sp=0.

" Transvecting (3.10) with f°* again and taking account of (3.11), we find (n—3) 7,0
=0 and consequently p=constant. Thus submanifold admits a Sasakian structure. This
completes the proof of the theorem.

If the (f, g, u, v, A)-structure of the ambient manifold is normal and satisfies I;v,—
Viw;=20f;» then we can similarly derive (3.7) and (3. 9). Thus we have

THEOREM 3.2. An odd-dimensional invariant submanifold N (dim N >3) of a mani-
fold with normal (f, g, w,v, ) -structure satisfying

Vivi—V0;=2pf;

o being non-zero differentiable function, admits a Sasakian structure.
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