• 제목/요약/키워드: Intracellular signaling

검색결과 536건 처리시간 0.022초

Differential Functions of Ras for Malignant Phenotypic Conversion

  • Moon Aree
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.113-122
    • /
    • 2006
  • Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.

Xylitol stimulates saliva secretion via muscarinic receptor signaling pathway

  • Park, Eunjoo;Na, Hee Sam;Jeong, Sunghee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.62-70
    • /
    • 2019
  • Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using real-time quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in $Ca^{2+}$ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.

Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

  • Lee, Dong-Ha
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.270-276
    • /
    • 2021
  • Physiological agents trigger a signaling process called "inside-out signaling" and activated platelets promote adhesion, granule release, and conformational changes of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and initiates a second signaling step called "external signaling". These two signaling pathways can cause hemostasis or thrombosis, and thrombosis is a possible medical problem in arterial and venous vessels, and platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, modulating platelet activity is important for platelet-mediated thrombosis and cardiovascular disease. Esculetin is a coumarin-based physiologically active 6,7-dihydroxy derivative known to have pharmacological activity against obesity, diabetes, renal failure and CVD. Although some studies have confirmed the effects of esculetin in human platelet activation and experimental mouse models, it is not clear how esculetin has antiplatelet and antithrombotic effects. We confirmed the effect and mechanism of action of escultein on human platelets induced by collagen. As a result, esculetin decreased Ca2+ recruitment through upregulation of inositol 1, 4, 5-triphosphate receptor. In addition, esculetin upregulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-dependent pathways and inhibits fibrinogen binding and thrombus contraction. Our results demonstrate the antiplatelet effect and antithrombotic effect of esculetin in human platelets. Therefore, we suggest that esculetin could be a potential phytochemical for the prevention of thrombus-mediated CVD.

Targeting Cellular Antioxidant Enzymes for Treating Atherosclerotic Vascular Disease

  • Kang, Dong Hoon;Kang, Sang Won
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.89-96
    • /
    • 2013
  • Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.

FINITE ELEMENT MODEL TO STUDY CALCIUM DIFFUSION IN A NEURON CELL INVOLVING JRYR, JSERCA AND JLEAK

  • Yripathi, Amrita;Adlakha, Neeru
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.695-709
    • /
    • 2013
  • Calcium is well known role for signal transduction in a neuron cell. Various processes and parameters modulate the intracellular calcium signaling process. A number of experimental and theoretical attempts are reported in the literature for study of calcium signaling in neuron cells. But still the role of various processes, components and parameters involved in calcium signaling is still not well understood. In this paper an attempt has been made to develop two dimensional finite element model to study calcium diffusion in neuron cells. The JRyR, JSERCA and JLeak, the exogenous buffers like EGTA and BAPTA, and diffusion coefficients have been incorporated in the model. Appropriate boundary conditions have been framed. Triangular ring elements have been employed to discretized the region. The effect of these parameters on calcium diffusion has been studied with the help of numerical results.

Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase

  • Choi, Min Sik
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.533-538
    • /
    • 2018
  • Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells

  • Sak, Katrin;Everaus, Hele
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4843-4847
    • /
    • 2015
  • To date, cytotoxic effects of flavonoids in various cancer cells are well accepted. However, the intracellular signaling cascades triggered by these natural compounds remain largely unknown and elusive. In this mini-review, the multiplicity of molecular targets of flavonoids in blood cancer cells is discussed by demonstrating the involvement of various signaling pathways in induction of apoptotic responses. Although these data reveal a great potential of flavonoids for the development of novel agents against different types of hematological malignancies, the pleiotropic nature of these compounds in modulation of cellular processes and their interactions certainly need unraveling and further investigation.

Anthocyanins: Targeting of Signaling Networks in Cancer Cells

  • Sehitoglu, Muserref Hilal;Farooqi, Ammad Ahmad;Qureshi, Muhammad Zahid;Butt, Ghazala;Aras, Aliye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2379-2381
    • /
    • 2014
  • It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in-vitro and in- vivo evidence indicates that anthocyanins have anticancer activity in rodent models of cancer. More intriguingly, evaluation of bilberry anthocyanins as chemopreventive agents in twenty-five colorectal cancer patients has opened new window of opportunity in translating the findings from laboratory to clinic. Confluence of information suggests that anthocyanins treated cancer cells reveal up-regulation of tumor suppressor genes. There is a successive increase in the research-work in nutrigenomics and evidence has started to shed light on intracellular-signaling cascades as common molecular targets for anthocyanins. In this review we bring to l imelight how anthocyanins induced apoptosis in cancer cells via activation of extrinsic and intrinsic pathways.

Inhibitory Effects of PD98059, SB203580, and SP600125 on α-and δ-granule Release and Intracellular Ca2+ Levels in Human Platelets

  • Kwon, Hyuk-Woo
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.253-262
    • /
    • 2018
  • Platelets are activated at sites of vascular injury via several molecules, such as adenosine diphosphate, collagen and thrombin. Full platelet aggregation is absolutely essential for normal hemostasis. Moreover, this physiological event can trigger circulatory disorders, such as thrombosis, atherosclerosis, and cardiovascular disease. Therefore, platelet function inhibition is a promising approach in preventing platelet-mediated circulatory disease. Many studies reported the involvement of mitogen-activated protein kinases (MAPKs) signaling pathways in platelet functions. However, these studies were limited. Thus, we examined MAPK signaling pathways in human platelets using specific MAPK inhibitors, such as PD98059, SB203580, and SP600125. We observed that these inhibitors were involved in calcium mobilization and influx in human platelets. They also suppressed thrombin-induced ${\alpha}$- and ${\delta}$-granule release. These results suggest that PD98059, SB203580, and SP600125 exhibit $Ca^{2+}$ antagonistic effects.