Browse > Article

Differential Functions of Ras for Malignant Phenotypic Conversion  

Moon Aree (College of Pharmacy, Duksung Women's University)
Publication Information
Archives of Pharmacal Research / v.29, no.2, 2006 , pp. 113-122 More about this Journal
Abstract
Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.
Keywords
Ras; Tumorigenesis; Signaling; Invasion; Migration;
Citations & Related Records

Times Cited By Web Of Science : 18  (Related Records In Web of Science)
Times Cited By SCOPUS : 18
연도 인용수 순위
1 Zhang, D., Bar-Eli, M., Meloche, S., and Brodt, P., Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J. Biol. Chem., 279, 19683-19690 (2004)   DOI   ScienceOn
2 Booden, M. A., Sakaguchi, D. S., and Buss, J. E., Mutation of Ha-Ras C terminus changes effector pathway utilization. J. Biol. Chem., 275, 23559-23568 (2000)   DOI   ScienceOn
3 Bos, J. L., Ras oncogenes in human cancer: a review. Cancer Res., 49, 4682-4689 (1989)
4 Brown, P. D., Levy, A. T., Margulies, I. M., and Liotta, L. A., and Stetler-Stevenson, W. G., Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res., 50, 6184-6191 (1990)
5 Carbone, A., Gusella, G. L., Radzioch, D., and Varesio, L., Human Harvey-ras is biochemically different from Kirsten- or N-ras. Oncogene, 6, 731-737 (1991)
6 Chiu, V. K., Bivona, T., Hach, A., Sajous, J. B., Silletti, J., Wiener, H., Johnson, R. L. II, Cox, A. D., and Philips, M. R., Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol., 4, 343-350 (2002)   DOI
7 Datta, S. R., Brunet, A., and Greenberg, M. E., Cellular survival: aplay in three Akts. Genes Dev., 13, 2905-2927 (1999)   DOI
8 Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., All Ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 57, 1167-1177 (1989)   DOI   ScienceOn
9 Hancock, J. F., Peterson, H., and Marshall, C. J., A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133-139 (1990)   DOI   ScienceOn
10 Jiang, K., Sun, J., Cheng, J., Djeu, J. Y., Wei, S., and Sebti, S., Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol. Cell Biol., 24, 5565-5576 (2004)   DOI   ScienceOn
11 Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., and Parise, L. V., Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature, 390, 632- 636 (1997)   DOI   ScienceOn
12 Kim, M. S., Lee, E. J., Choi kim, H. R., and Moon, A., p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell. Cancer Res., 63, 5454-5461 (2003)
13 Malliri, A., Van der Kammen, R. A., Clark, K., Van der Valk, M., Michiels, F., and Collar, J. G., Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumors. Nature, 417, 867-871 (2002)   DOI   ScienceOn
14 Qui, R., McCormick, F., and Symons, M., An essential role for Rac in Ras transformation. Nature, 374, 457-459 (1995)   DOI   ScienceOn
15 Sato, H., Kita, M., and Seiki, M., v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J. Biol. Chem., 268, 23460-23468 (1993)
16 Simon, C., Goepfert, H., and Boyd, D., Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMAinduced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res., 58, 1135-1139 (1998)
17 Tryggvason, K., Type-IV collagenase in invasive tumors. Breast Cancer Res. Treat., 24, 209-218 (1993)   DOI
18 Simon, C., Juarez, J., Nicolson, G. L., and Boyd, D., Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression and in vitro invasion. Cancer Res., 56, 5369-5374 (1996)
19 Steller-Stevenson, W. G., Type-IV collagenases in tumor invasion and metastasis. Cancer Metast. Rev., 9, 289-303 (1990)   DOI
20 Tryggvason, K., Huhtala, P., Tuuttila, A., Chow, L., Keski-Oja, J., and Lohi, J., Structure and expression of type IV collagenase genes. Cell. Differ. Dev., 32, 307-312 (1990)   DOI   ScienceOn
21 Ura, H., Bonfil, R. D., Reich, R., Reddel, R., Pfeifer, A., Harris, C. C., and Klein-Szanto, A. J., Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res. 49, 4615-4621 (1989)
22 Voice, J. K., Klemke, R. L., Le, A., and Jackson, J. H., Four Human Ras Homologs Differ in Their Abilities to Activate Raf- 1, Induce Transformation, and Stimulate Cell Motility. J. Biol. Chem., 274, 17164-17170 (1999)   DOI
23 Willumsen, B. M., Norris, K, Papageorge, A. G, Hubbert, N. L, and Lowy, D. R., Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J., 3, 2581- 2585 (1984b)
24 Parton, R. G. and Hancock, J. F., Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol., 14, 141-147 (2004)   DOI   ScienceOn
25 Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J., Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. U.S.A., 89, 6403– 6407 (1992)
26 Li, J. J., Rhim, J. S., Schlegel, R., Vousden, K. H., and Colburn, N. H., Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene , 16, 2711-2721 (1998)   DOI
27 Moon, S. K., Cha, B. Y., and Kim, C. H., ERK1/2 mediates TNFalpha- induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: Involvement of the ras dependent pathway. J. Cell Physiol., 198, 417-427 (2004)   DOI   ScienceOn
28 Clair, T., Miller, W., and Cho-Chung, Y., Prognostic significance of the expression of the ras protein with a molecular weight of 21, 000 by human breast cancer. Cancer Res., 49, 5290- 5293 (1987)
29 Shin, I. C., Kim, S. H., Song, H., Choi Kim, H. R., and Moon, A., H-Ras-specific activation of Rac-MKK3/6-p38 pathway. J. Biol. Chem., 15, 14675-14683 (2005)
30 Walsh, A. B. and Bar-Sagi, D., Differential activation of the Rac pathway by Ha-Ras and K-Ras. J. Biol. Chem., 276, 15609- 152001 (2001)   DOI   ScienceOn
31 Nakopoulou, L., Tsirmpa, I., Alexandrou, P., Louvrou, A., Ampela, C., Markaki, S., and Davaris, P. S., MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res. Treat., 77, 145-155 (2003)   DOI   ScienceOn
32 Alessi, D. R., Saito, Y., Campbell, D. G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C. J., and Cowley, S., Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J., 13, 1610-1619 (1994)
33 Bernhard, E. J., Gruber, S. B., and Muschel, R. J., Direct evidence linking expression of matrix metalloproteinase 9 (92 kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc. Natl. Acad. Sci. U.S.A., 91, 4293-4297 (1994)
34 Johnson, L., Greenbaum, D., Cichowski, K., Mercer, K., Murphy, E., Schmitt, E., Bronson, R. T., Umanoff, H., Edelmann, W., Kucherlapati, R., and Jacks, T., K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev., 11, 2468-2481 (1997)   DOI
35 Oliff, A., Rarnesyltransferse inhibitors: targeting the molecular basis of cancer. Biochim. Biophys. Acta, 1423, C19-C30 (1999)
36 Willumsen, B. M, Christensen, A, Hubbert, N. L, Papageorge, A. G, and Lowy, D. R., The p21 ras C-terminus is required for transformation and membrane association. Nature, 310, 583- 586 (1984a)   DOI   ScienceOn
37 Chung, T. W., Lee, Y. C., and Kim, C. H., Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J., 18, 1123-1125 (2004)   DOI
38 Khwaja, A., Akt is more than just a Bad kinase. Nature, 401, 33- 34 (1999)   DOI   ScienceOn
39 Ludes-Meyers, J. H., Liu, Y., Munoz-Medellin, D., Hilsenbeck, S. G., and Brown, P. H., AP-1 blockade inhibits the growth of normal and malignant breast cells. Oncogene, 20, 2771- 2780 (2001)   DOI
40 Maher, J., Baker, D. A., Manning, M., Dibb, N. J., and Roberts, I. A. G.., Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene, 11, 1639-1647 (1995)
41 Casey, P. J, Solski, P. A., Der, C. J., and Buss, J. E., p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. U.S.A., 86, 8323-8327 (1989)
42 Watson, D. M., Elton, R. A., Jack, W. J., Dixon, J. M., Chetty, U., and Miller, W. R., The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res. Treat., 17, 161-169 (1991)   DOI
43 Joneson, T., White, M., Wigler, M., and Bar-Sagi, D., Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science, 271, 810-812 (1996)   DOI   ScienceOn
44 Talvensaari-Mattila, A., Paakko, P., Blanco-Sequeiros, G., and Turpeenniemi-Hujanen, T., Matrix metalloproteinase-2 (MMP- 2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with antiestrogen adjuvant therapy. Breast Cancer Res. Treat., 65, 55-61 (2001)   DOI   ScienceOn
45 Pola, S., Cattaneo, M. G., and Vicentini, L. M., Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: involvement of Rac and MAP kinase activity. J. Biol. Chem., 278, 40601-40606 (2003)   DOI   ScienceOn
46 Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G., and Hancock, J. F., GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol., 3, 368-375 (2001)   DOI   ScienceOn
47 Sachdev, P., Zeng, L., and Wang, L. H., Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes. J. Biol. Chem., 277, 17638-17648 (2002)   DOI   ScienceOn
48 Gutierrez, L., Magee, A. I., Marshall, C. J., and Hancock, J. F., Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J., 8, 1093-1098 (1989)
49 Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A., The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401-410 (1992)   DOI   ScienceOn
50 Sato, H. and Seiki, M., Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene, 8, 395-405 (1993)
51 Yordy, J. S. and Muise-Helmericks, R. C., Signal transduction and the Ets family of transcription factors. Oncogene, 19, 6503-6513 (2000)   DOI
52 Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F., Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol., 160, 165-170 (2003)   DOI   ScienceOn
53 Clark, G. J. and Der, C. J., Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat., 35, 133-144 (1995)   DOI
54 Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J. F., and Parton, R. G., Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol., 1, 98–105 (1999)   DOI   ScienceOn
55 Welch, H. C., Coadwell, W. J., Stephens, L. R., and Hawkins, P. T., Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett., 546, 93-97 (2003)   DOI   ScienceOn
56 Choy, E., V. K., Chiu, J., Silletti, M., Feoktistov, T., Morimoto, D., Michaelson, I. E., Ivanov, and M. R. Philips., Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell, 98, 69-80 (1999)   DOI   ScienceOn
57 Kyriakis, J. M., App, H., Zhang, X. F., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J., Raf-1 activates MAP kinasekinase. Nature, 358, 417-421 (1992)   DOI   ScienceOn
58 Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J., Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 370, 527-532 (1994)   DOI   ScienceOn
59 Lambert, J. M., Lambert, Q. T., Reuther, G. W., Malliri, A., Siderovski, D. P., Sondek, J., Collard, J. D., and Der, C. J., Tiam1 mediates Ras activation of Rac by a PI(3)Kindependent mechnism. Nature, 417, 625-821 (2002)   DOI   ScienceOn
60 Pacold, M. E., Suire, S., Perisic, O., Lara-Gonzlez, W., Davis, C. T., Walker, E. H., Hawkins. P. T., Stephens, L., Eccleston, J. R., and Williams, R. L., Crystal strucure and functional analysis of Ras binding to its effector phosphoinositide 3- kinasea. Cell, 103, 931-943 (2000)   DOI   ScienceOn
61 Bivona, T. G., Perez De Castro, I., Ahearn, I. M., Grana, T. M., Chiu, V. K., Lockyer, P. J., Cullen, P. J., Pellicer, A., Cox, A. D., and Philips, M. R., Phospholipase Cgamma activates Ras on the Golgi apparatus by means of Ras-GRP1. Nature, 7, 694-698 (2003)
62 Downward, J., Mechainsms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol., 10, 262-267 (1998)   DOI   ScienceOn
63 Moon, A., Kim, M. S., Kim, T. G., Kim, S. H., Kim, H. E., Chen, Y. Q., and Choi Kim, H. R., H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int. J. Cancer, 85, 176-181 (2000)
64 Bodey, B., Bodey, B. Jr., Groger, A. M., Siegel, S. E., and Kaiser, H. E., Invasion and metastasis: the expression and significance of matrix metalloproteinases in carcinomas of the lung. In Vivo, 15, 175-180 (2001)
65 Boguski, M. S. and McCormick, F., Proteins regulating Ras and its relatives. Nature, 663, 643-654 (1993)
66 Etienne-Manneville, S. and Hall, A., Rho GTPases in cell biology. Nature, 420, 629-635 (2002)   DOI   ScienceOn
67 Qin, H., Sun, Y., and Benveniste, E. N., The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J. Biol. Chem., 274, 29130-29137 (1999)   DOI
68 Simon, C., Simon, M., Vucelic, G., Hicks, M. J., Plinkert, P. K., Koitschev, A., and Zenner, H. P., The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP- 1-dependent promoter activation. Exp. Cell Res., 271, 344- 355 (2001)   DOI   ScienceOn
69 Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E., Signaling pathways for PC12 cell differentiation: making the right connections. Science, 296, 1648-1649 (2002)   DOI   ScienceOn
70 Barbacid, M., Ras genes. Annu. Rev. Biochem., 56, 779-827 (1987)   DOI   ScienceOn
71 Bergman, M. R., Cheng, S., Honbo, N., Piacentini, L., Karliner, J. S., and Lovett, D. H., A functional activating protein 1 (AP- 1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem. J., 369, 485-496 (2003)   DOI   ScienceOn
72 Cox, A. D. and Der, C. J., Fanesyltransferase inhibitors and cancer treatment: targeting simply Ras- Biochem. Biophys. Acta, 1333, F51-F71 (1997)
73 Seabra, M. C., Membrane association and targeting or prenylated Ras-like GTPases. Cell signal., 10, 167-172 (1998)   DOI   ScienceOn
74 Xu, Q., Karouji, Y., Kobayashi, M., Ihara, S., Konishi, H., and Fukui, Y., The PI 3-kinase-Rac-p38 MAP kinase pathway is involved in the formation of signet-ring cell carcinoma. Oncogene, 22, 5537-5544 (2003)   DOI   ScienceOn
75 Bachmeier, B. E., Albini, A., Vene, R., Benelli, R., Noonan, D., Weigert, C., Weiler, C., Lichtinghagen, R., Jochum, M., and Nerlich, A. G., Cell density-dependent regulation of matrix metalloproteinase and TIMP expression in differently tumorigenic breast cancer cell lines. Exp. Cell Res., 305, 83- 98 (2005)   DOI   ScienceOn
76 Bian, D., Su, S., Mahanivong, C., Cheng, R. K., Han, Q., Pan, Z. K., Sun, P., and Huang, S., Lysophosphatidic Acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res., 64, 4209-4217 (2004)   DOI   ScienceOn
77 Li, J. J., Cao, Y., Young, M. R., and Colburn, N. H., Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes. Mol. Carcinog., 29, 159- 169 (2000)   DOI   ScienceOn
78 Simons, K. and Toomre, D., Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1, 31–39 (2000)   DOI   ScienceOn
79 Stetler-Stevenson, W. G., Hewitt, R., and Corcoran, M., Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin. Cancer Biol., 7, 147-154 (1996)   DOI   ScienceOn
80 Wolthuis, R. M. and Bos, J. L., Ras caught in another affaif: the RHOad less traveled gets congested. Oncogene, 17, 1415- 1438 (1999)   DOI   ScienceOn
81 Bernhard, E. J., Muschel, R. J., Hughes, E. N., and M. R., 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res., 50, 3872-3877 (1990)
82 Marais, R., Light, Y., Paterson, H. F., and Marshall, C. J., Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J., 14, 3136-3145 (1995)
83 Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. and Downward, J., Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J., 16, 2783- 2793 (1997)   DOI   ScienceOn
84 Marshall, C. J., Ras effectors. Curr. Opin. Cell Biol., 8, 197-204 (1996)   DOI   ScienceOn
85 Umanoff, H., Edelmann, W., Pellicer, A., and Kucherlapati, R., The murine N-ras gene is not essential for growth and development. Proc. Natl. Acad. Sci. U.S.A., 92, 1709-1713 (1995)
86 Gum, R., Wang, H., Lengyel, E., Juarez, J., and Boyd, D., Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signalregulated kinase-dependent signaling cascades. Oncogene, 14, 1481-1493 (1997)   DOI
87 Magee, T. and Marshall, C., New insights into the interaction of Ras with the plasma membrane. Cell, 98, 9-12 (1999)   DOI   ScienceOn
88 Matallanas, D., Arozarena, I., Berciano, M. T., Aaronson, D. S., Pellicer, A., Lafarga, M., and Crespo, P., Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J. Biol. Chem., 278, 4572-4581 (2003)   DOI   ScienceOn
89 Nobes, C. D. and Hall, A., Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexs associated with actin stress fibers, lamlipodia, and filopodia. Cell, 81, 53-62 (1995)   DOI   ScienceOn
90 Niv, H., Gutman, O., Kloog, Y., and Henis, Y. I., Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol., 157, 865- 872 (2002)   DOI   ScienceOn
91 Oldham, S. M., Clark, G. J., Gangarosa, L. M., Coffey, R. J., and Der, C. J., Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. U.S.A., 93, 6924-6928 (1996)
92 Hancock, J. F., Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol., 4, 373-384 (2003)   DOI   ScienceOn
93 Bian, J. and Sun, Y., Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol. Cell Biol., 17, 6330-6338 (1997)   DOI
94 Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J., Increasing complexity of Ras signaling. Oncogene, 17, 1395–1413 (1998)   DOI   ScienceOn
95 Feig, L. A., Urano, T., and Canto, S., Evidence for a Ras/Ral signaling cascade. Trends Biochem. Sci., 21, 438-441 (1996)   DOI   ScienceOn
96 Leevers, S. J., Paterson, H. F., and Marshall, C. J., Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature, 369, 411-414 (1994)   DOI   ScienceOn
97 Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., Cancer metastasis and angiogenesis : An imbalance of positive and negative regulation. Cell, 64, 327-336 (1991)   DOI   ScienceOn
98 Prior, I. A. and Hancock, J. F., Compartmentalization of ras proteins. J. Cell Sci. 114, 1603-1608 (2001)
99 Reif, K., Nobes, C. D., Thomas, G., Hall, A., and Cantrell, D. A., Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr. Biol. 6, 1445-1455 (1996)   DOI   ScienceOn
100 Downward, J., Targeting ras signaling pathways in cancer therapy. Nature, 3, 11-22 (2003)
101 Pruitt, K. and Der, C. J., Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett., 171, 1-10 (2001)   DOI   ScienceOn
102 Romashkova, J. A. and Makarov, S. S., NF-kappaB is target of AKT in anti-apoptotic PDGF signaling. Nature, 401, 86-90 (1999)   DOI   ScienceOn
103 Franks, L. M. and Teich, N. M., Cellular and Molecular Biology of Cancer. Oxford University Press, (1997)
104 Koera, K., Nakamura, K., Nakao, K., Miyoshi, J., Toyoshima, K., Hatta, T., Otani, H., Aiba, A., and Katsuki, M., K-ras is essential for the development of the mouse embryo. Oncogene, 15, 1151-1159 (1997)   DOI   ScienceOn
105 Li, J. J., Westergaard, C., Ghosh, P., and Colburn, N. H., Inhibitors of both nuclear factor-kappaB and activator protein- 1 activation block the neoplastic transformation response. Cancer Res., 57, 3569-3576 (1997)
106 Yan, J., Roy, S., Apolloni, A., Lane, A., and Hancock, J. F., Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem., 273, 24052-24056 (1998)   DOI   ScienceOn
107 Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J., Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol., 10, 147-154 (2000)   DOI   ScienceOn
108 Sato, H., Kida, Y., Mai, M., Endo, Y., Sasaki, T., Tanaka, J., and Seiki, M., Mutation spectra of smoky coal combustion emissions in Salmonella reflect the TP53 and KRAS mutations in lung tumors from smoky coal-exposed individuals. Oncogene, 7, 77-83 (1992)