Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.179

Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase  

Choi, Min Sik (Lab of Pharmacology, College of Pharmacy, Dongduk Women's University)
Publication Information
Biomolecules & Therapeutics / v.26, no.6, 2018 , pp. 533-538 More about this Journal
Abstract
Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.
Keywords
Nitric Oxide; S-nitrosylation; Transnitrosylation; GSNO; GSNOR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, Y. J., Ching, W. C., Lin, Y. P. and Chen, Y. J. (2013) Methods for detection and characterization of protein S-nitrosylation. Methods 62, 138-150.   DOI
2 Choi, M. S., Nakamura, T., Cho, S. J., Han, X., Holland, E. A., Qu, J., Petsko, G. A., Yates, J. R., Liddington, R. C. and Lipton, S. A. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson's disease models. J. Neurosci. 34, 15123-15131.   DOI
3 Choi, Y. B., Tenneti, L., Le, D. A., Ortiz, J., Bai, G., Chen, H. S. V. and Lipton, S. A. (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3, 15-21.   DOI
4 Chung, K. K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C., Marsh, L., Dawson, V. L. and Dawson, T. M. (2004) S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function. Science 304, 1328-1331.   DOI
5 Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. and Ting, J. P.Y. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. U.S A. 103, 15091-15096.   DOI
6 Cox, A. G., Saunders, D. C., Kelsey, P. B., Jr., Conway, A. A., Tesmenitsky, Y., Marchini, J. F., Brown, K. K., Stamler, J. S., Colagiovanni, D. B., Rosenthal, G. J., Croce, K. J., North, T. E. and Goessling, W. (2014) S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep. 6, 56-69.   DOI
7 Devarie-Baez, N. O., Zhang, D., Li, S., Whorton, A. R. and Xian, M. (2013) Direct methods for detection of protein S-nitrosylation. Methods 62, 171-176.   DOI
8 Eo, S. H., Cho, H. and Kim, S. J. (2013) Resveratrol inhibits nitric oxide-induced apoptosis via the NF-kappa B pathway in rabbit articular chondrocytes. Biomol. Ther. (Seoul) 21, 364-370.   DOI
9 Iyer, A. K. V., Rojanasakul, Y. and Azad, N. (2014) Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide 42, 9-18.   DOI
10 Hur, M. W. and Edenberg, H. J. (1992) Cloning and characterization of the ADH5 gene encoding human alcohol dehydrogenase 5, formaldehyde dehydrogenase. Gene 121, 305-311.   DOI
11 Jaffrey, S. R. and Snyder, S. H. (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, pl1.
12 Jelski, W., Orywal, K., Panek, B., Gacko, M., Mroczko, B. and Szmitkowski, M. (2009) The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the wall of abdominal aortic aneurysms. Exp. Mol. Pathol. 87, 59-62.   DOI
13 Jelski, W. and Szmitkowski, M. (2008) Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin. Chim. Acta 395, 1-5.   DOI
14 Jiang, H., Polhemus, D. J., Islam, K. N., Torregrossa, A. C., Li, Z., Potts, A., Lefer, D. J. and Bryan, N. S. (2016) Nebivolol acts as a Snitrosoglutathione reductase inhibitor. J. Cardiovasc. Pharmacol. Ther. 21, 478-485.   DOI
15 Kornberg, M. D., Sen, N., Hara, M. R., Juluri, K. R., Nguyen, J. V. K., Snowman, A. M., Law, L., Hester, L. D. and Snyder, S. H. (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat. Cell Biol. 12, 1094-1100.   DOI
16 Fauconnier, J., Thireau, J., Reiken, S., Cassan, C., Richard, S., Matecki, S., Marks, A. R. and Lacampagne, A. (2010) Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 107, 1559-1564.   DOI
17 Laniewska-Dunaj, M., Jelski, W., Orywal, K., Kochanowicz, J., Rutkowski, R. and Szmitkowski, M. (2013) The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer. Neurochem. Res. 38, 1517-1521.   DOI
18 Qu, J., Nakamura, T., Cao, G., Holland, E. A., McKercher, S. R. and Lipton, S. A. (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc. Natl. Acad. Sci. U.S.A. 108, 14330-14335.   DOI
19 Que, L. G., Liu, L., Yan, Y., Whitehead, G. S., Gavett, S. H., Schwartz, D. A. and Stamler, J. S. (2005) Protection from experimental asthma by an endogenous bronchodilator. Science 308, 1618-1621.   DOI
20 Que, L. G., Yang, Z., Stamler, J. S., Lugogo, N. L. and Kraft, M. (2009) S-nitrosoglutathione reductase. Am. J. Respir. Crit. Care Med. 180, 226-231.   DOI
21 Foster, M. W., Hess, D. T. and Stamler, J. S. (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 15, 391-404.   DOI
22 Giustarini, D., Milzani, A., Colombo, R., Dalle-Donne, I. and Rossi, R. (2003) Nitric oxide and S-nitrosothiols in human blood. Clin. Chim. Acta 330, 85-98.   DOI
23 Gomes, S. A., Rangel, E. B., Premer, C., Dulce, R. A., Cao, Y., Florea, V., Balkan, W., Rodrigues, C. O., Schally, A. V. and Hare, J. M. (2013) S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 110, 2834-2839.   DOI
24 Seth, D. and Stamler, J. S. (2011) The SNO-proteome: causation and classifications. Curr. Opin. Chem. Biol. 15, 129-136.   DOI
25 Ryu, Y. K., Lee, J. W. and Moon, E. Y. (2015) Thymosin beta-4, actinsequestering protein regulates vascular endothelial growth factor expression via hypoxia-inducible nitric oxide production in hela cervical cancer cells. Biomol. Ther. (Seoul) 23, 19-25.   DOI
26 Sanghani, P. C., Davis, W. I., Fears, S. L., Green, S. L., Zhai, L., Tang, Y., Martin, E., Bryan, N. S. and Sanghani, S. P. (2009) Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. J. Biol. Chem. 284, 24354-24362.   DOI
27 Sengupta, R. and Holmgren, A. (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid. Redox Signal. 18, 259-269.   DOI
28 Smith, M. (1986) Genetics of human alcohol and aldehyde dehydrogenases. Adv. Hum. Genet. 15, 249-290.
29 Snyder, A. H., McPherson, M. E., Hunt, J. F., Johnson, M., Stamler, J. S. and Gaston, B. (2002) Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am. J. Respir. Crit. Care Med. 165, 922-926.   DOI
30 Grasemann, H., Gaston, B., Fang, K., Paul, K. and Ratjen, F. (1999) Decreased levels of nitrosothiols in the lower airways of patients with cystic fibrosis and normal pulmonary function. J. Pediatr. 135, 770-772.   DOI
31 Green, L. S., Chun, L. E., Patton, A. K., Sun, X., Rosenthal, G. J. and Richards, J. P. (2012) Mechanism of inhibition for N6022, a first-inclass drug targeting S-nitrosoglutathione reductase. Biochemistry 51, 2157-2168.   DOI
32 Gu, Z., Kaul, M., Yan, B., Kridel, S. J., Cui, J., Strongin, A., Smith, J. W., Liddington, R. C. and Lipton, S. A. (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186-1190.   DOI
33 Guerra, D., Ballard, K., Truebridge, I. and Vierling, E. (2016) S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55, 2452-2464.   DOI
34 Liu, L., Yan, Y., Zeng, M., Zhang, J., Hanes, M. A., Ahearn, G., McMahon, T. J., Dickfeld, T., Marshall, H. E., Que, L. G. and Stamler, J. S. (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617-628.   DOI
35 Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J. and Loscalzo, J. (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U.S.A. 89, 444-448.   DOI
36 Sun, X., Qiu. J., Strong, S. A., Green, L. S., Wasley, J. W., Blonder, J. P., Colagiovanni, D. B., Stout, A. M., Mutka, S. C., Richards, J. P. and Rosenthal, G. J. (2012) Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification. Bioorg. Med. Chem. Lett. 22, 2338-2342.   DOI
37 Lima, B., Lam, G. K., Xie, L., Diesen, D. L., Villamizar, N., Nienaber, J., Messina, E., Bowles, D., Kontos, C. D., Hare, J. M., Stamler, J. S. and Rockman, H. A. (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc. Natl. Acad. Sci. U.S.A. 106, 6297-6302.   DOI
38 Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) A redoxbased mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632.   DOI
39 Lipton, S. A., Choi, Y. B., Takahashi, H., Zhang, D., Li, W., Godzik, A. and Bankston, L. A. (2002) Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation. Trends Neurosci. 25, 474-480.   DOI
40 Takahashi, H., Shin, Y., Cho, S. J., Zago, W. M., Nakamura, T., Gu, Z., Ma, Y., Furukawa, H., Liddington, R., Zhang, D., Tong, G., Chen, H. S. and Lipton, S. A. (2007) Hypoxia enhances S-nitrosylationmediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53, 53-64.   DOI
41 Tian, J., Kim, S. F., Hester, L. and Snyder, S. H. (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 105, 10537-10540.   DOI
42 Trujillo, M., Alvarez, M. N., Peluffo, G., Freeman, B. A. and Radi, R. (1998) Xanthine oxidase-mediated decomposition of S-nitrosothiols. J. Biol. Chem. 273, 7828-7834.   DOI
43 Uehara, T., Nakamura, T., Yao, D., Shi, Z.Q., Gu, Z., Ma, Y., Masliah, E., Nomura, Y. and Lipton, S. A. (2006) S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513-517.   DOI
44 Ulrich, C., Quilici, D. R., Schlauch, K. A. and Buxton, I. L. (2013) The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. Am. J. Physiol. Cell Physiol. 305, C803-C816.   DOI
45 Wei, W., Li, B., Hanes, M. A., Kakar, S., Chen, X. and Liu, L. (2010) S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci. Transl. Med. 2, 19ra13.
46 Wu, K., Zhang, Y., Wang, P., Zhang, L., Wang, T. and Chen, C. (2014) Activation of GSNOR transcription by NF-${\kappa}$B negatively regulates NGF-induced PC12 differentiation. Free Radic. Res. 48, 1011-1017.   DOI
47 Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J. S. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490-494.   DOI
48 Methner, C., Chouchani, E. T., Buonincontri, G., Pell, V. R., Sawiak, S. J., Murphy, M. P. and Krieg, T. (2014) Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur. J. Heart Fail. 16, 712-717.   DOI
49 Mitchell, D. A. and Marletta, M. A. (2005) Thioredoxin catalyzes the Snitrosation of the caspase-3 active site cysteine. Nat. Chem. Biol. 1, 154-158.   DOI
50 Wu, C., Liu, T., Chen, W., Oka, S., Fu, C., Jain, M. R., Parrott, A. M., Baykal, A. T., Sadoshima, J. and Li, H. (2010) Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol. Cell. Proteomics 9, 2262-2275.   DOI
51 Yang, Z., Wang, Z. E., Doulias, P. T., Wei, W., Ischiropoulos, H., Locksley, R. M. and Liu, L. (2010) Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 185, 6664-6669.   DOI
52 Yao, D., Gu, Z., Nakamura, T., Shi, Z. Q., Ma, Y., Gaston, B., Palmer, L. A., Rockenstein, E. M., Zhang, Z., Masliah, E., Uehara, T. and Lipton, S. A. (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. U.S.A. 101, 10810-10814.   DOI
53 Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B. and Palmer, L. A. (2001) S-Nitrosoglutathione Increases Cystic Fibrosis Transmembrane Regulator Maturation. Biochem. Biophys. Res. Commun. 284, 65-70.   DOI
54 Hess, D. T. and Stamler, J. S. (2012) Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411-4418.   DOI
55 Al-Sa'doni, H. H. and Ferro, A. (2005) Current status and future possibilities of nitric oxide-donor drugs: focus on S-nitrosothiols. Mini Rev. Med. Chem. 5, 247-254.   DOI
56 Bateman, R. L., Rauh, D., Tavshanjian, B. and Shokat, K. M. (2008) human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J. Biol. Chem. 283, 35756-35762.   DOI
57 Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H. and Sawa, A. (2005) Snitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665-674.   DOI
58 Hatzistergos, K. E., Paulino, E. C., Dulce, R. A., Takeuchi, L. M., Bellio, M. A., Kulandavelu, S., Cao, Y., Balkan, W., Kanashiro-Takeuchi, R. M. and Hare, J. M. (2015) S-nitrosoglutathione reductase deficiency enhances the proliferative expansion of adult heart progenitors and myocytes post myocardial infarction. J. Am. Heart Assoc. 4, e001974.
59 Hess, D. T., Matsumoto, A., Kim, S.O., Marshall, H. E. and Stamler, J. S. (2005) Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150-166.   DOI
60 Hou, Q., Jiang, H., Zhang, X., Guo, C., Huang, B., Wang, P., Wang, T., Wu, K., Li, J., Gong, Z., Du, L., Liu, Y., Liu, L. and Chen, C. (2011) Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila. Nitric Oxide 24, 17-24.   DOI
61 Hoog, J. O. and Ostberg, L. J. (2011) Mammalian alcohol dehydrogenases - a comparative investigation at gene and protein levels. Chem. Biol. Interact. 191, 2-7.   DOI
62 Huang, Y., Man, H. Y., Sekine-Aizawa, Y., Han, Y., Juluri, K., Luo, H., Cheah, J., Lowenstein, C., Huganir, R. L. and Snyder, S. H. (2005) S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46, 533-540.   DOI
63 Park, P. H., Hur, J., Lee, D. S., Kim, Y. C., Jeong, G. S. and Sohn, D. H. (2011) Inhibition of Nitric oxide production by ethyl digallates isolated from galla rhois in RAW 264.7 macrophages. Biomol. Ther. (Seoul) 19, 419-424.   DOI
64 Montagna, C., Di Giacomo, G., Rizza, S., Cardaci, S., Ferraro, E., Grumati, P., De Zio, D., Maiani, E., Muscoli, C., Lauro, F., Ilari, S., Bernardini, S., Cannata, S., Gargioli, C., Ciriolo, M. R., Cecconi, F., Bonaldo, P. and Filomeni, G. (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid. Redox Signal. 21, 570-587.   DOI
65 Moon, Y., Cao, Y., Zhu, J., Xu, Y., Balkan, W., Buys, E. S., Diaz, F., Kerrick, W. G., Hare, J. M. and Percival, J. M. (2017) GSNOR Deficiency enhances in situ skeletal muscle strength, fatigue resistance, and RyR1 S-nitrosylation without impacting mitochondrial content and activity. Antioxid. Redox Signal. 26, 165-181.   DOI
66 Murray, C. I., Uhrigshardt, H., O'Meally, R. N., Cole, R. N. and Van Eyk, J. E. (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol. Cell. Proteomics 11, M111.013441.   DOI
67 Nakamura, T., Wang, L., Wong, C. C., Scott, F. L., Eckelman, B. P., Han, X., Tzitzilonis, C., Meng, F., Gu, Z., Holland, E. A., Clemente, A. T., Okamoto, S., Salvesen, G. S., Riek, R., Yates, J. R., 3rd and Lipton, S. A. (2010) Transnitrosylation of XIAP regulates caspasedependent neuronal cell death. Mol. Cell 39, 184-195.   DOI
68 NamKoong, S. and Kim, Y. M. (2010) Therapeutic application of nitric oxide in human diseases. Biomol. Ther. (Seoul) 18, 351-362.   DOI
69 Pawloski, J. R., Hess, D. T. and Stamler, J. S. (2001) Export by red blood cells of nitric oxide bioactivity. Nature 409, 622-626.   DOI
70 Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S. and Hare, J. M. (2012) Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. U.S.A.109, 4314-4319.   DOI
71 Benhar, M., Forrester, M. T., Hess, D. T. and Stamler, J. S. (2008) Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins. Science 320, 1050-1054.   DOI
72 Bonaventura, C., Godette, G., Ferruzzi, G., Tesh, S., Stevens, R. D. and Henkens, R. (2002) Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease. Biophys. Chem. 98, 165-181.   DOI
73 Brennan, A. M., Won Suh, S., Joon Won, S., Narasimhan, P., Kauppinen, T. M., Lee, H., Edling, Y., Chan, P. H. and Swanson, R. A. (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci.12, 857-863.   DOI
74 Broniowska, K. A. and Hogg, N. (2012) The chemical biology of Snitrosothiols. Antioxid. Redox Signal. 17, 969-980.   DOI
75 Carver, D. J., Gaston, B., deRonde, K. and Palmer, L. A. (2007) Aktmediated activation of hif-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am. J. Respir. Cell Mol. Biol. 37, 255-263.   DOI
76 Brown-Steinke, K., deRonde, K., Yemen, S. and Palmer, L. A. (2010) gender differences in S-nitrosoglutathione reductase activity in the lung. PLoS ONE 5, e14007.   DOI
77 Carvalho-Filho, M. A., Ueno, M., Hirabara, S. M., Seabra, A. B., Carvalheira, J. B. C., de Oliveira, M. G., Velloso, L. A., Curi, R. and Saad, M. J. A. (2005) S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54, 959-967.   DOI