• Title/Summary/Keyword: Intracellular pH

Search Result 415, Processing Time 0.034 seconds

TRPV1 in Salivary Gland Epithelial Cells Is Not Involved in Salivary Secretion via Transcellular Pathway

  • Choi, Seulki;Shin, Yong-Hwan;Namkoong, Eun;Hwang, Sung-Min;Cong, Xin;Yu, Guangyan;Park, Kyungpyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.525-530
    • /
    • 2014
  • Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ($[Ca^{2+}]_i$) in these cells, although carbachol consistently increased $[Ca^{2+}]_i$. Exposure of cells to high temperature (> $43^{\circ}C$) or acidic bath solution (pH5.4) did not increase $[Ca^{2+}]_i$, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway.

Thermostability of a marine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava

  • Kang, Min-Cheol;Kim, Eun-A;Kang, Sung-Myung;Wijesinghe, W.A.J.P.;Yang, Xiudong;Kang, Na-Lae;Jeon, You-Jin
    • ALGAE
    • /
    • v.27 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • The thermostability of antioxidant activity of dieckol, a phlorotannin isolated from brown seaweed Ecklonia cava was investigated. The thermostable antioxidant properties of dieckol were evaluated at 30, 60, and $90^{\circ}C$ for 7 days using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities, and comparing its performance to that of ascorbic acid. The intracellular reactive oxygen species (ROS) scavenging activity and apoptotic body formation were investigated using DCF-DA assay and nuclear staining with Hoechst 33342, propidium iodide and flow cytometry. Dieckol treated at different temperatures during 7 days showed stable scavenging activities on towards DPPH and hydroxyl radicals. In addition, dieckol showed a stable protective effect against $H_2O_2$-induced apoptotic body formation in Vero cells. On the other hand, the radical scavenging activities and intracellular ROS scavenging activities of ascorbic acid, used as a positive control, were significantly decreased at $60^{\circ}C$ and $90^{\circ}C$ from on the 4th day and 3rd days, respectively. In conclusion, the results indicated that food grade antioxidant extracts containing dieckol derived from E. cava remain a stable during the temperatures encountered during the processing of food and cosmetics.

Role of cytoskeleton in Host Cell Invasion by Intracellular Protozoa Toxoplasma gondii

  • Lee, Sook-Hwan;Lee, Boo-Young;Min, Duk-Young;Kim, Jung-Mogg;Ahn, Myoung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.628-634
    • /
    • 2002
  • A microfilament-based motility in Toxoplasma gondii (T. gondii) Is involved in host cell invasion, yet the exact mechanism has not yet been determined. Accordingly, the current study examined the localization of actin and tubulin in T gondii using immunofluorescent (IF) and immunogold staining for electron microscopy. Indirect immunofluorescence (IF) staining using anti-actin and anti-tubulin monoclonal antibodies (mAbs) revealed localization of fluorescence on the entire surface of the tachyzoites. The actin in T. gondii was observed by immunogold staining, and the gold particles were seen on the surface, especially at the anterior end and in the cytoplasm of the parasite. However, there were no gold particles in the nucleus, rhoptries, and dense granules. The tubulin in T gondii was located on the surface and in the cytoplasm of the tachyzoites in the extracellular parasite, compared with anterior part of tachyzoites in the intracellular parasite. The antigens of T gondii recognized by anti-actin mAb were 107 kDa, 50 kDa, 48 kDa, and 40 kDa proteins, while those recognized by anti-tubulin mAb were 56 kDa, 52 kDa, and 34 kDa proteins. Tachyzoites of T gondii pretreated with the actin inhibitor, cytochalasin D (20 $\mu\textrm{g}$/ml), and tubulin inhibitor, colchicine (2$\times$10$\^$-6/ M), for 30 min at 37$\^{C}$ were used to infect the isolated mouse macrophages (tachyzo ites:macrophage=2:1). Pretreatment with the inhibitors resulted in lower multiplication of tachyzoites within the macrophages than in the untreated group 18 h post infection (p<0.05). Therefore, the present results suggest that actin and tubulin appear to be involved in the invasion of and multiplication in host cells.

Free Living Amoeba-Bacteria Interactions: Analysis of Escherichia coli Interactions with Nonpathogenic or Pathogenic Free Living Amoeba

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Free-living amoebae ingest several kinds of bacteria. In other words, the bacteria can survive within free-living amoeba. To determine how Escherichia coli K1 isolate causing neonatal encephalitis and non-pathogenic K12 interact with free-living amoebae, e.g., Acanthamoeba castellanii (T1), A. astronyxis (T7), Naegleria fowleri, association, invasion and survival assays were performed. To understand pathogenicity of free-living amoebae, in vitro cytotoxicity assay were performed using murine macrophages. T1 destroyed macrophages about 64% but T7 did very few target cells. On the other hand, N. fowleri which needed other growth conditions rather than Acanthamoeba destroyed more than T1 as shown by lactate dehydrogenase (LDH) release assay. In association assays for E. coli binding to amoebae, the T7 exhibited significantly higher association with E. coli, compared with the T1 isolates (P<0.01). Interestingly, N. fowleri exhibited similar percentages of association as T1. Once E. coli bacteria attach or associate with free-living amoeba, they can penetrate into the amoebae. In invasion assays, the K1 (0.67%) within T1 was observed compared with K12 (0%). E. coli K1 and K12 exhibited high association with N. fowleri and bacterial CFU. To determine the fate of E. coli in long-term survival within free-living amoebae, intracellular survival assays were performed by incubating E. coli with free-living amoebae in PBS for 24 h. Intracellular E. coli K1 within T1 (2.5%) and T7 (1.8%) were recovered and grown, while K12 were not found. N. fowleri was not invaded and here it was not recovered.

Purification and Characterization of an Intracellular NADH: Quinone Reductase from Trametes versicolor

  • Lee, Sang-Soo;Moon, Dong-Soo;Choi, Hyoung-T.;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • Intracellular NADH:quinone reductase involved in degradation of aromatic compounds including lignin was purified and characterized from white rot fungus Trametes versicolor. The activity of quinone reductase was maximal after 3 days of incubation in fungal culture, and the enzyme was purified to homogeneity using ion-exchange, hydrophobic interaction, and gel filtration chromatographies. The purified enzyme has a molecular mass of 41kDa as determined by SDS-PAGE, and exhibits a broad temperature optimum between $20-40^{\circ}C$, with a pH optimum of 6.0. The enzyme preferred FAD as a cofactor and NADH rather than NADPH as an electron donor. Among quinone compounds tested as substrate, menadione showed the highest enzyme activity followed by 1,4-benzoquinone. The enzyme activity was inhibited by $CuSO_4,\;HgCl_2,\;MgSO_4,\;MnSO_4,\;AgNO_3$, dicumarol, KCN, $NaN_3$, and EDTA. Its $K_m\;and\;V_{max}$ with NADH as an electron donor were $23{\mu}M\;and\;101mM/mg$ per min, respectively, and showed a high substrate affinity. Purified quinone reductase could reduce 1,4-benzoquinone to hydroquinone, and induction of this enzyme was higher by 1,4-benzoquinone than those of other quinone compounds.

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju;Park, Kwan-Sik;Jeon, In-Sook;Cho, Jae-Woon;Lee, Sang-Jeon;Choy, Hyun E.;Song, Ki-Duk;Lee, Hak-Kyo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.566-572
    • /
    • 2016
  • Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

Exploration of β-Glucuronidase Activity of Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 젖산균의 β-glucuronidase 활성 탐색)

  • Kim, Eun-Jung;Shin, In-Ung;Kwun, Se-Young;Park, Eun-Hee;Yi, Jae-Hyoung;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.434-440
    • /
    • 2019
  • Lactic acid bacteria (LAB) isolated from kimchi were studied for their ${\beta}$-glucuronidase activity. Among the 156 strains tested, 52 strains utilized glucuronic acid as a carbon source and their intracellular ${\beta}$-glucuronidase activities were significantly higher than their extracellular activities. Leuconostoc mesenteroides KFRI 73007 isolated from turnip kimchi exhibited the highest intracellular ${\beta}$-glucuronidase activity of $0.77{\pm}0.01U/mg$ protein, which was further increased to $1.14{\pm}0.01U/mg$ protein under optimized reaction conditions (pH 7, $37^{\circ}C$). The activity of ${\beta}$-glucuronidase was notably decreased by the addition of divalent cations, and glucuronic acid was the best carbon source to produce ${\beta}$-glucuronidase in Leu. mesenteroides KFRI 73007.

Neuroprotective Effects of Bread Containing Cirsium setidens or Aster scaber (곤드레 또는 참취를 함유한 빵의 뇌신경 보호효과)

  • Kwon, Ki Han;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • This study investigated the neuroprotective effects of bread containing extract from Cirsium setidens (CS) or Aster scaber (AS) against $H_2O_2$-induced death of human brain neuroblastoma SK-N-SH cells. Treatment with bread containing extract from CS (CSB) or AS (ASB) reduced $H_2O_2$ cytotoxicity in SK-N-SH cells, the intracellular ROS level, and the phospho-p38 mitogen-activated protein kinase (MAPK) level. In the sensory evaluation, wild vegetable flavor scores of CSB were higher than those of ASB and bread containing 0% CS or AS (NB). In terms of appearance, color, flavor, softness, and overall acceptability, CSB and ASB showed higher scores than NB, but no differences were observed between CSB and ASB. These results indicate that CSB and ASB have potent health benefits in terms of neuroprotection against oxidative stress mediated through antioxidant activity and inhibition of p38 phosphorylation in brain neural cells. Thus, CS and AS could be considered as a health functional material.

Effects of 4 Week Exercise on Activation of Extracellular Signal-regulated Kinases and c-Jun N-terminal Kinase Pathways in Rat Tibialis Muscle (4주간 달리기 운동이 흰쥐의 전경골근에서 ERK 및 JNK의 활성화에 미치는 영향)

  • Choi, Suck-Jun;Shin, Byung-Cheul;Park, Han-Su;Kim, Mo-Kyung;Shin, Chul-Ho;Kim, Min-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.76-81
    • /
    • 2007
  • The effect of either low or high intensity four weeks exercise treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the c-Jun N-terminal kinase(JNK) pathways was determined in rat tibialis muscle. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary group(NE; n=10); (ii) low intensity exercise group (8m/min; LIE; n=10); and (iii) high intensity exercise group(28m/min; HIE; n=10). The training regimens were planned so that animals covered the same distance and had similar glycogenutilization for both LIE and HIE exercise sessions. After four weeks exercise, 48 h after the last exercise bout obtained samples. pERK1 increased 1.5 times comparing with the sedentary group in the low intensity group while it increased 11.7 times in high intensity group, in the tibialis of rats. In the low intensity group, pERK2 increased 1.4 times comparing with the sedentary group while it increased 3.3 times in high intensity group. While pJNK1 decreased 0.9 times, comparing with the sedentary group, pJNK2 was increased to 0.5 times in the low intensity group. But in high intensity group, pJNK2 decreased 0.7 times while pJNK1 didn't show any change. In conclusion, Four weeks exercise of different intensities results in tibialis muscle activation of intracellular signal pathways, which may be one mechanism regulating specific adaptations induced by different exercise intensities.

Inhibition of Histone Deacetylase Activity Diminishes Pressure Overloaded Cardiac Hypertrophy in Mice

  • Hong, Yun-Kyung;Song, Jong-Wook;Lee, Sang-Kil;Lee, Young-Jeon;Rho, Gyu-Jin;Kim, Joo-Heon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • To explore the role of histone deactylase (HDAC) activation in an in vivo model of hypertrophy, we studied the effects of Trichostatin A (TSA). TSA subjected to thoracic aortic banding (TAB)-induced pressure stress in mice. In histological observations, TAB in treated mice showed a significant hypertrophic response, whereas the sham operation remained nearly normal structure with partially blunted hypertrophy. TSA treatment had no effect (measured as HW/BW) on sham-operated animals. TAB animals treated with vehicle manifested a robust ~50% hypertrophic response (p<0.05 vs sham). TAB mice treated with 2 mg/kg/day TSA manifested a blunted growth responses, which was significantly diminished (p<0.05) compared with vehicle-treated TAB mice. TAB mice treated with a lower dose of TSA (0.5 mg/kg/day) manifested a similar blunting of hypertrophic growth (~25% increase in heart mass). Furthermore, to determine activity duration of TSA in vitro, 1 nM TSA was added to H9c2 cells. Histone acetylation was initiated at 4 hr after treatment, and it was peak up to 18 hr, then followed by significantly reduced to 30 hr. We also analyzed the expression of p53 following TSA treatment, wherein p53 expression was elevated at 4 hr, and it was maintained to 24 hr after treatment. ERK was activated at 8 hr, and maintained till 30 hr after treatment suggesting an intracellular signaling interaction between TSA and p53 expression Taken together, it is suggested that HDAC activation is required for pressure-overload growth of the heart. Eventually, these data suggest that histone acetylation may be a novel target for therapeutic intervention in pressure-overloaded cardiac hypertrophy.