Browse > Article

Purification and Characterization of an Intracellular NADH: Quinone Reductase from Trametes versicolor  

Lee, Sang-Soo (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Moon, Dong-Soo (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Choi, Hyoung-T. (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Song, Hong-Gyu (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Publication Information
Journal of Microbiology / v.45, no.4, 2007 , pp. 333-338 More about this Journal
Abstract
Intracellular NADH:quinone reductase involved in degradation of aromatic compounds including lignin was purified and characterized from white rot fungus Trametes versicolor. The activity of quinone reductase was maximal after 3 days of incubation in fungal culture, and the enzyme was purified to homogeneity using ion-exchange, hydrophobic interaction, and gel filtration chromatographies. The purified enzyme has a molecular mass of 41kDa as determined by SDS-PAGE, and exhibits a broad temperature optimum between $20-40^{\circ}C$, with a pH optimum of 6.0. The enzyme preferred FAD as a cofactor and NADH rather than NADPH as an electron donor. Among quinone compounds tested as substrate, menadione showed the highest enzyme activity followed by 1,4-benzoquinone. The enzyme activity was inhibited by $CuSO_4,\;HgCl_2,\;MgSO_4,\;MnSO_4,\;AgNO_3$, dicumarol, KCN, $NaN_3$, and EDTA. Its $K_m\;and\;V_{max}$ with NADH as an electron donor were $23{\mu}M\;and\;101mM/mg$ per min, respectively, and showed a high substrate affinity. Purified quinone reductase could reduce 1,4-benzoquinone to hydroquinone, and induction of this enzyme was higher by 1,4-benzoquinone than those of other quinone compounds.
Keywords
quinone; NADH:quinone reductase; Trametes versicolor; enzyme purification;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Brock, B., S. Rieble, and M. Gold. 1995. Purification and characterization of a 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 3076-3081   PUBMED
2 Haynes, C., R. Koder, A. Miller, and D. Roders. 2002. Structure of nitroreductase in three states. J. Biol. Chem. 277, 11513-11520   DOI   ScienceOn
3 Melo, A., T. Bandeiras, and M. Teixeira. 2004. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol. Mol. Biol. Rev. 68, 603-616   DOI   ScienceOn
4 Qi, W. and J. Jellison. 2004b. Induction and catalytic properties of an intracellular NADH-dependent 1,4-benzoquinone reductase from the brown-rot basidiomycete Gloeophyllum trabeum. Int. Biodet. Biodeg. 54, 53-60   DOI   ScienceOn
5 Stahl, J., S. Rasmussen, and S. Aust. 1995. Reduction of quinones and radicals by a plasma membrane redox system of Phanerochaete chrysosporium. Arch. Biochem. Biophys. 322, 221-227   DOI   ScienceOn
6 Vyas, B., J. Volc, and V. Šašek. 1994. Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw. Folia Microbiol. 39, 235-240   DOI
7 Watanabe, M., T. Nishino, K. Takio, T. Sofuni, and T. Nohmi. 1998. Purification and characterization of wild-type and mutant 'classical' nitroreductase of Salmonella typhimurium. J. Biol. Chem. 273, 23922-23928   DOI   ScienceOn
8 Jensen, K., Jr., Z. Ryan, A. Wymelenberg, D. Cullen, and K. Hammel. 2002. An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 68, 2699-2703   DOI
9 Constam, D., A. Muheim, W. Zimmermann, and A. Fiechter. 1991. Purification and partial characterization of an intracellular NADH:quinone oxidoreductase from Phanerochaete chrysosporium. J. Gen. Microbiol. 137, 2209-2214   DOI
10 Han, M.-J., H.-T. Choi, and H.-G. Song. 2004. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42, 94-98
11 Rasmussen, S., N. Chung, A. Khindaria, T. Grover, and S. Aust. 1995. Reductions catalyzed by a quinone and peroxidases from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 320, 243-249   DOI   ScienceOn
12 Shin, K.-S., Y.-H. Kim, and J.-S. Lim. 2005. Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus. J. Microbiol. 43, 503-509   과학기술학회마을
13 Xiao, Y., X. Tu, J. Wang, M. Zhang, Q. Cheng, W. Zeng, and Y. Shi. 2003. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl. Microbiol. Biotechnol. 60, 700-707   DOI   PUBMED
14 Wesenberg, D., I. Kyriakides, and S. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22, 161-187   DOI   ScienceOn
15 Cohen, R., M. Suzuki, and K. Hammel. 2004. Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 70, 324-331   DOI
16 Conesa, A., P. Punt, and C. van den Hondel. 2002. Fungal peroxidases: molecular aspects and applications. J. Biotechnol. 93, 143-158   DOI   ScienceOn
17 Henriksson, G., G. Johansson, and G. Pettersson. 2000. A critical review of cellobiose dehydrogenases. J. Biotechnol. 78, 93-113   DOI   ScienceOn
18 Manchenko, G.P. 1994. Handbook of detection of enzyme on electrophoretic gels. CRC Press p. 84-88
19 Qi, W. and J. Jellison. 2004a. Characterization of a transplasma membrane redox system of the brown rot fungus Gloeophyllum trabeum. Int. Biodet. Biodeg. 53, 37-42   DOI   ScienceOn
20 Roy, B., T. Dumonceaux, A. Koukoulas, and F. Archibald. 1996. Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Appl. Environ. Microbiol. 62, 4417-4427   PUBMED
21 Cheong, S., S. Yeo, H.-G. Song, and H.-T. Choi. 2006. Determination of laccase gene expression during degradation of 2,4,6-trinitrotoluene and its catabolic intermediates in Trametes versicolor. Microbiol. Res. 161, 316-320   DOI   ScienceOn
22 Han, M.-J., H.-T. Choi, and H.-G. Song. 2005. Purification and characterization of laccase from the white rot fungus Trametes versicolor. J. Microbiol. 43, 555-560   과학기술학회마을
23 Ichinose, H., H. Wariishi, and H. Tanaka. 2002. Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 59, 658-664   DOI   ScienceOn