• 제목/요약/키워드: Interval type-2 fuzzy set

검색결과 13건 처리시간 0.036초

패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크 (Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition)

  • 박건준;오성권
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Interval 제 2 종 퍼지 radial basis function neural network (Interval type-2 fuzzy radial basis function neural network)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법 (Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.99-105
    • /
    • 2017
  • 일반적으로 type-1 fuzzy set 에 존재하는 불확실성을 보다 효율적으로 다루고 제어하기 위하여 Type-2 fuzzy set (T2 FS)이 널리 사용되고 있다. T2 FS에서 퍼지화 상수 (fuzzifier value) m은 이러한 불확실성을 처리하기 위한 가장 중요한 요소이다. 따라서 적절한 퍼지화 상수 값을 결정하는 연구는 여전히 지속되고 있고, 많은 방법들이 연구 되어 왔다. 본 논문에서는 주어진 패턴을 분류하기 위하여 Interval type-2 possibilistic fuzzy C-means (IT2PFCM) 클러스터링 방법을 사용한다. 클러스터링을 위해 사용된 IT2 PFCM 방법에서 각 데이터에 대하여 적응적으로 적절한 퍼지화 상수의 값을 계산하는 방법을 제안한다. 히스토그램 접근법을 통하여 각각의 데이터 포인트로부터 정보를 추출해 내고 추출된 정보를 이용하여 두 개의 퍼지화 상수인 $m_1$, $m_2$. 값을 결정한다. 이렇게 얻어진 값은 interval type-2 fuzzy의 최저 및 최고 멤버쉽 값을 결정하게 된다.

Interval 제2종 퍼지 퍼셉트론 (An Interval Type-2 Fuzzy Perceptron)

  • 황철;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.223-226
    • /
    • 2002
  • This Paper presents an interval type-2 fuzzy perceptron algorithm that is an extension of the type-1 fuzzy perceptron algorithm proposed in [1]. In our proposed method, the membership values for each Pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the decision boundary obtained by interval type-2 fuzzy memberships can converge to a more desirable location than the boundary obtained by crisp and type-1 fuzzy perceptron methods. Experimental results are given to show the effectiveness of our method

  • PDF

TPM에서 퍼지 OEE 모형의 개발 및 분석 (Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM)

  • 최성운
    • 한국경영공학회지
    • /
    • 제23권4호
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석 (Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm)

  • 오성권;김욱동;박호성;이영일
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2011
  • 본 논문에서는 RBF 뉴럴 네트워크에서 은닉층 활성함수에 Interval type-2 퍼지개념을 적용한 새로운 RBF 뉴럴 네트워크를 설계하였다. 퍼지 시스템 분야에서 불확실한 정보에 대한 Type-1 퍼지집합의 성능을 보안하고자 Type-2 퍼지집합이 제안되었으며, 멤버쉽함수 안에 다시 멤버쉽함수를 생성함으로써 불확실한 정보를 좀 더 효과적으로 다루고자 하였다. 따라서 본 논문에서는 RBF 뉴럴 네트워크의 은닉층 활성함수에 type-2 퍼지집합의 개념을 적용하여 불확실한 정보에 대한 모델 성능을 개선하고자 하였다. 나아가 연결가중치를 상수항이 아닌 1차식으로 구성된 다항식을 사용하여 최종출력을 입력-출력의 관계식으로 표현하였다. 연결가중치는 기존의 경사하강법(Gradient Descent Method; GDM) 대신 conjugate gradient method(CGM)을 사용하여 파라미터를 동조하고, 은닉층의 활성함수는 공간탐색 진화 알고리즘(Space Search Evolutionary Algorithm; SSEA)을 이용하여 가우시안 함수의 중심점 및 분포상수를 동조하여 모델의 성능을 개선시킨다. 제안된 모델의 성능을 평가하기 위해 가스로 시계열 데이터를 사용하였으며, 결과를 기존 모델과 비교하였다.

계단모양 소속 함수 근사를 이용한 구간 2형 퍼지 시스템의 관측기 기반 제어기 설계 (Design of Observer-based Controller for Interval Type-2 Fuzzy System Using Staircase Membership Function Approximation)

  • 김한솔;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1732-1733
    • /
    • 2011
  • This paper presents observer-based controller design for interval type-2 fuzzy system with staircase membership approximation. In type-2 fuzzy case, membership function is itself fuzzy set itself. Thus, type-2 fuzzy system can deal with parametric uncertainties of nonlinear system by capturing the uncertainties in membership function. Likewise, stabilization condition of type-2 fuzzy system is derived from quadratic Lyapunov function, and it goes to linear matrix inequality. Furthermore, in this paper, to relax the conservativeness of stabilization condition, staircase membership function approximating method is applied. Observer-based control method is adopted to control system which has some unmeasurable states. To prove suitability of our proposed method, numerical example is presented.

  • PDF

다중 출력을 가지는 Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크 최적 설계 (Optimal Design of Interval Type-2 Fuzzy Set-based Multi-Output Fuzzy Neural Networks)

  • 박건준;김용갑;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1968-1969
    • /
    • 2011
  • 본 논문에서는 패턴 인식을 위한 다중 출력을 가지는 Interval Type-2 퍼지 집합을 이용한 퍼지 집합 기반 퍼지 뉴럴 네트워크를 소개한다. Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크는 각 입력 변수에 따른 서로 분리된 입력 공간을 분할함으로서 네트워크 및 규칙을 구성한다. 규칙의 전반부는 퍼지 입력 공간을 개별적으로 분할하여 표현하고, 각 공간은 Interval Type-2 퍼지 집합으로 구성된다. 규칙의 후반부는 패턴 인식을 위한 다중 출력을 가지며 Interval 집합을 이용하여 다항식으로서 표현된다. 다항식의 계수인 연결가중치는 오류역 전파 알고리즘을 이용하여 학습한다. 또한 실수 코딩 유전자 알고리즘을 이용하여 제안된 네트워크를 최적화한다. 제안된 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Interval Type-2 퍼지 집합 기반 퍼지뉴럴네트워크 설계 및 최적화 (Design of Interval Type-2 Fuzzy Set-based Fuzzy Neural Network and Its Optimization)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1901_1902
    • /
    • 2009
  • 본 논문에서는 Interval Type-2 퍼지 집합을 이용한 퍼지집합 기반 퍼지뉴럴네트워크를 설계하고 최적화한다. Interval Type-2 퍼지뉴럴네트워크는 각 입력 변수에 따른 서로 분리된 입력 공간을 분할함으로서 네트워크 및 규칙을 구성한다. 규칙의 전반부는 퍼지 입력 공간을 개별적으로 분할하여 표현하고, 각 공간은 Interval Type-2 퍼지 집합으로 구성된다. 규칙의 후반부는 Interval 집합을 이용하여 다항식으로서 표현되며, 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식을 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽함수의 정점과 불확실성 계수 그리고 학습률 및 모멘텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 제안된 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty)

  • 박건준;김용갑;황근창
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.173-181
    • /
    • 2017
  • 산업이 발달함에 따라서 빅데이터가 무수히 생산되고 있으며 이에 따라서 데이터에 내재된 불확실성도 증가하고 있다. 본 논문에서는 데이터에 내재된 불확실성을 다루기 위해 interval type-2 퍼지 클러스터링 방법을 제안하고 이를 이용하여 퍼지뉴럴네트워크를 설계하고 최적화한다. 제안한 클러스터링 방법을 이용하여 퍼지 규칙을 설계하고 학습을 수행한다. 최적화하는 방법으로서 유전자 알고리즘을 이용하고 모델 파라미터들을 최적 탐색한다. 실험에서는 두 가지 패턴 분류를 시행하였으며 두 가지 실험 모두 우수한 패턴 인식 결과를 보여준다. 제안한 네트워크는 증가하는 불확실성을 다룰 수 있는 방법을 제공할 수 있을 것이다.