• 제목/요약/키워드: Interval censored data

검색결과 62건 처리시간 0.026초

Bootstrap Confidence Intervals for Regression Coefficients under Censored Data

  • 조길호;정성화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.355-363
    • /
    • 2002
  • Using the Buckley-James method, we construct bootstrap confidence intervals for the regression coefficients under the censored data. And we compare these confidence intervals in terms of the coverage probabilities and the expected confidence interval lengths through Monte Carlo simulation.

  • PDF

군집의 크기가 생존시간에 영향을 미치는 군집 구간중도절단된 자료에 대한 준모수적 모형 (Modeling Clustered Interval-Censored Failure Time Data with Informative Cluster Size)

  • 김진흠;김윤남
    • 응용통계연구
    • /
    • 제27권2호
    • /
    • pp.331-343
    • /
    • 2014
  • 본 논문에서는 군집 구간중도절단된 자료에서 생존시간이 군집의 크기에 의존할 때 주변모형으로부터 가중 추정 방법과 군집 내 재추출 방법을 써서 모수를 추정하고 그 추정량의 점근적 성질을 살펴보았다. 모의실험을 통해 추정량의 편향의 크기와 신뢰구간의 포함율 측면에서 볼 때 제안한 두 추정 방법이 생존시간과 군집의 크기 간의 종속 관계를 무시한 방법보다 우수한 것으로 나타났다. 제안한 추정 방법을 림프성 사상충 자료에 적용한 결과에 따르면 서로 다른 두 치료방법이 유의하게 다르지 않았으며 나이 효과도 매우 유의하지 않은 것으로 나타났다.

구간중도절단자료에서 생존함수와 중간생존시간에 대한 추정 (Estimation of Survival Function and Median Survival Time in Interval-Censored Data)

  • 윤은영;김충락
    • 응용통계연구
    • /
    • 제23권3호
    • /
    • pp.521-531
    • /
    • 2010
  • 구간중도절단은 중도절단의 가장 일반적인 개념으로 구간중도절단자료는 의학 및 역학분야의 연구에서 흔히 관찰된다. 본 연구에서는 구간중도절단의 상황에서 생존함수와 중간생존시간을 추정하는 방법으로 평균대치법과 자기일치법을 비교 연구하고, 실제 자료로 혈우병환자에서 선천성면역결핍바이러스 감염시점을 추정하였다. 또한 구간중도절단자료를 생성하는 새로운 방법을 제시하였으며, 생성된 구간중도절단자료를 이용한 모의실험을 통하여 두 추정치에 대한 다양한 비교연구를 시행하였다. 구간중도절단자료에서 생존함수와 중간생존시간을 추정할 경우 중도절단율이 크지 않다면 평균대치법이 자기일치법보다 더 우수한 추정치로 판명되었다.

A Note on a New Two-Parameter Lifetime Distribution with Bathtub-Shaped Failure Rate Function

  • Wang, F.K.
    • International Journal of Reliability and Applications
    • /
    • 제3권1호
    • /
    • pp.51-60
    • /
    • 2002
  • This paper presents the methodology for obtaining point and interval estimating of the parameters of a new two-parameter distribution with multiple-censored and singly censored data (Type-I censoring or Type-II censoring) as well as complete data, using the maximum likelihood method. The basis is the likelihood expression for multiple-censored data. Furthermore, this model can be extended to a three-parameter distribution that is added a scale parameter. Then, the parameter estimation can be obtained by the graphical estimation on probability plot.

  • PDF

Bootstrap Confidence Interval of Treatment Effect for Censored Data

  • Hyun Jong KIM;Sang Gue PARK
    • Communications for Statistical Applications and Methods
    • /
    • 제4권3호
    • /
    • pp.917-927
    • /
    • 1997
  • Consider the confidence interval estimators of treatment effect when some of data to be analyzed are randomly censored, assuming two-sample location-shift model. Recently proposed PARK and PARK(1995) Estimators is discussed and a bootstrap estimator is proposed. This estimator is compared with other well-known estimators throught the simulation studies and recommendations about the use are made.

  • PDF

Bayesian analysis of an exponentiated half-logistic distribution under progressively type-II censoring

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1455-1464
    • /
    • 2013
  • This paper develops maximum likelihood estimators (MLEs) of unknown parameters in an exponentiated half-logistic distribution based on a progressively type-II censored sample. We obtain approximate confidence intervals for the MLEs by using asymptotic variance and covariance matrices. Using importance sampling, we obtain Bayes estimators and corresponding credible intervals with the highest posterior density and Bayes predictive intervals for unknown parameters based on progressively type-II censored data from an exponentiated half logistic distribution. For illustration purposes, we examine the validity of the proposed estimation method by using real and simulated data.

군집화된 구간 중도절단자료에 대한 치유율 모형의 적용 (Cure Rate Model with Clustered Interval Censored Data)

  • 김양진
    • 응용통계연구
    • /
    • 제27권1호
    • /
    • pp.21-30
    • /
    • 2014
  • 치유율 모형(cure rate model)은 위험 그룹의 단조 감소에 대한 가정이 부적절한 경우에 적용될 수 있다. 예를 들어, 생존 분석에서 위험 그룹은 시간이 경과함에 따라 점점 감소하여 무한대의 시간대에는 영으로 수렴하며 이는 곧 생존 함수가 영으로 수렴함을 의미한다. 하지만 이러한 가정이 적합하지 못한 자료가 의약학, 사회학, 경제학 등에서 종종 발생된다. 즉, 어느 시점에 이르러 더 이상의 생존함수는 감소하지 않고 평행선을 보여주는 경우에 로그 순위검정(log rank test)과 Cox's 비례위험모형(proportional hazard model)의 적용은 바람직하지 못한 결론을 가져오게 된다. 이러한 자료에 대해 치유율 모형(cure rate model)에서는 사건 발생 취약 그룹(susceptible group)과 비취약 그룹(insusceptible group)으로 나누어 취약그룹에 대해서만 일반적인 생존 분석 방법을 적용하는 혼합 모형(mixture model)을 적용해왔다 (Berkson과 Gage, 1952). 본 연구에서는 이러한 치유율 모형을 군집화 구간 중도 절단 자료(clustered interval censored data)에 적용해 보고자 한다. 최근에 Kim과 Jhun (2008)은 구간 중도 절단자료에 대해 치유율 모형을 적용하였으며 본 연구에서는 그들의 방법을 군집화 자료로 확장할 것이다. 실제 자료 분석의 예로 금연자료를 분석할 것이다.

지렛대 붓스트랩을 이용한 이변량 구간 중도 절단 자료의 일치성 검정 (A concordance test for bivariate interval censored data using a leverage bootstrap)

  • 김양진
    • 응용통계연구
    • /
    • 제32권5호
    • /
    • pp.753-761
    • /
    • 2019
  • 본 논문에서는 이변량 구간 중도 절단 자료의 연관성 검정을 연구하고자 한다. Kendall's τ 통계량은 분포의 가정을 필요로 하지 않는 비모수방법으로 연관성 검정을 위해 빈번히 적용되고 있다. 본 논문에서도 이러한 τ 통계량을 이용한 검정을 하기 위해 붓스트랩 방법을 적용시킨다. 일반적인 비모수 붓스트랩 방법의 구간 중도 절단에 적용은 편의된 결과를 보여주었다. 이는 구간 중도 절단자료의 불완전성(incompleteness)과 관련된 것으로 이를 극복하기 위해 지렛대 붓스트랩 방법을 적용하였다. 추정된 분포에 근거하여 구간 중도 절단 대신 모의 완전한 표본(pseudo complete data)을 추룰하는 것이다. 본 논문에서는 재표본의 크기 m을 결정하기 위해 기존 연구자의 공식을 이용하였다. 시행된 모의 실험의 결과는 바람직한 제 1종 오류값과 좋은 검정력을 보였주었으며 실제 적용 예로 AIDS 자료에서 HIV 감염시점과 바이러스 잠복 시간과의 연관성 여부를 검정해보았다.

일회성 무기체계 특성에 따른 고장 데이터의 오차 및 극복방안 (Failure Data Error according to Characteristics of One-Shot Weapon System and its Solution)

  • 최윤석;마정목
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.599-606
    • /
    • 2018
  • Failure data of systems in many field can be erroneous, which influences the reliability analysis of the systems. The general form of failure data is right censored data with accurate time information. But due to its nature of data collection in the military field, failure time of one-shot weapon systems can have errors which are related to the maintenance period. So this paper suggests a model that can reduce the error by utilizing interval censored data as an alternative to right censored data in weibull distribution.

Empirical Bayes Interval Estimation by a Sample Reuse Method

  • Cho, Kil-Ho;Choi, Dal-Woo;Chae, Hyeon-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권1호
    • /
    • pp.41-48
    • /
    • 1997
  • We construct the empirical Bayes(EB) confidence intervals that attain a specified level of EB coverage for the unknown scale parameter in the Weibull distribution with the known shape parameter under the type II censored data. Our general approach is to use an EB bootstrap samples introduced by Larid and Louis(1987). Also, we compare the coverage probability and the expected interval length for these bootstrap intervals with those of the naive intervals through Monte Carlo simulation.

  • PDF