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Empirical Bayes Interval Estimation
by a Sample Reuse Method

Kil-Ho Cho - Dal-Woo Choi - Hyeon-Sook Chae!

Abstract We construct the empirical Bayes(EB) confidence intervals that attain a
specified level of EB coverage for the unknown scale parameter in the Weibull
distribution with the known shape parameter under the type II censored data. Our
general approach is to use an EB bootstrap samples introduced by Larid and
Louis(1987). Also, we compare the coverage probability and the expected interval
length for these bootstrap intervals with those of the naive intervals through Monte
Carlo simulation.

Keywords: Bootstrap, Empirical Bayes confidence interval, Type I censored data
Weibull distribution.

1. Introduction

There are two main classes of EB estimators. The first class consists of methods
that attempt to approximate the Bayes estimator without explicitly estimating the
unknown prior distribution. The second class consists of methods in which the
unknown prior distribution is explicitly estimated. The smooth EB methods
developed by Maritz(1966,1967), Lemon and Krutchkoff(1969), and Couture and
Martz(1972) are based on the second method. The posterior distribution is easily
obtained for the second class of EB estimators and EB confidence intervals can be
obtained from it. In this paper, we consider the smooth EB estimations of the scale
parameter for the Weibull distribution given by

A16:8) =08t exp(-64f), 1,20, 6, p>0 M

where 6, is the scale parameter and f is the shape parameter whose value is
assumed to be known. We assume that a sequence of N (2 2) life test experiments
has been conducted in which #, items in the i -th experiment are placed on life
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test which is terminated at the time when the number of failures is 7, , 1<, < n,.
The ordered failure times ¢, <¢, <---< t, are recorded in each experiment. The
statistic

S, =il,f‘ +(n,—r,)t2 2)
j=1

is the sufficient statistic for the scale parameter 6,. And conditional on 6., S
has a gamma distribution G(ri,Q,)A. It is also easily shown that the maximum
likelihood(ML) estimator of 6,, 6, =r,/S,, has an inverse gamma distribution
IG(r,-,H,-r,-) . Lemon and Krutchkoff(1969) proposed a smoothing procedure which
may be interpreted the approximation of the prior distribution by a step function
having steps of equal height 1/N at each of the ML estimates &, &, ---, fy. They
also suggested a second possible interaction with each ML estimate 6 replaced
by the corresponding EB estimate from the first iteration. Such EB estimators will

be referred to the iterated EB estimators.

2. EB Confidence Intervals

We consider the iterated EB estimations of the scale parameter for the Weibull
distribution under the type II censoring scheme. Suppose @ is univariate. If 0,
denotes the ML estimate of #; and has an IG(r,,erj)in the j-th experiment,
J=1,2,---, N, then the EB estimator of &; for the first iteration is given by

g = ZkN=1 ékf(éj'é")
T r(eh)

w0 exp(=8r,/8))

’j=1525...9N

= 3
> & exol-0,/4,) ©
where
Ala (ékrj)rj [ 1]’; ( ékrjj .
6.6 )= - -—=2\, j=12,-- N 4
f( J k) F(rj) g, €Xp ) J

and
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9,~=,«/S,~=r,-/ [Zw( )i } )

Using ;s in equation (3), the iterared EB estimator of 6, is given by

é =Zr1 ff( lﬁ)’
" zj=1f( "~1>

) ijlgm exp( 9r/é>,)
= ZFl 9j’: exp(— o, / é) 6)

2.1 Naive EB‘ Confidence Interval

Martz and Waller(1982) obtained the iterated EB naive confidence interval of
6, as follows. Let gy (9,[9,) denote the estimated posterior probability mass
function, where g, is the EB point estimate of 6; according to equation ).
Then the estimated posterior distribution of 6, according to equation (5) is given

by

i=1,2,-,N

)= _r4B) L2 N
=)
67 exp(~y,/6)
X087 exel-9/8)
where &; is given by equation (4). Therefore, they constructed the symmetric

100(1 - 2a)% iterated EB naive confidence interval of 6, based upon g,(@))
given by

(3l

(7

G 3)

where &y, -, 8x) denote the ordered (smallest to largest) sequence of EB
estimates of 4,---,6y, j* is the smallest integer satisfying the relation
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2l-a )
and ;" is the largest integer satisfying the relation
AU 8" ex - .1./6,
tg]v(g(j)lel):zjjvl ,(;I) p( if) /,\ )
= ZH 0 exp(— o, / 9,.)
<ca. (10)

If no such integer ;™ exists between 1 and N, then ;™ sets to zero. Thus the
lower limit of the estimate will be .

2.2 Marginal EB Bootstrap Interval

We construct the marginal EB bootstrap interval to correct the bias of the naive
interval using the type II nonparametric(smoothed) bootstrap which is a sample
reuse method introduced by Laird and Louis(1987). The marginal EB bootstrap
procedure for the symmetric 100(1-2a)% iterated EB confidence interval of 6,
may be described as follows:

(1) Generate the bootstrap samples t,.;, Jj=12,---,n, from the sample
distribution

A1,]8.5)= 6815 exp(-41f), i=1,2,-,N, (11)

where é is the ML estimator of 6,.
(2) Construct the bootstrap sufficient statistic S, . That is,

S; =0+ ()P (12)
Jj=1
(3) Compute the bootstrap ML estimator & fromthe S;’s, i=1,2,---, N. That
is,
. I
6, =—+. 13
= (13)

(4) Compute the first EB bootstrap estimator &;° in the same way as &; in
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equation (3) from the b -th bootstrap samples. That is,
g _ Y 0("‘”)' exp(- or,/ é)
! Z 0(' exp( / 6’)

(5) Construct the bootstrap interval [&7.,,82,]using &; replaced by 8;° in
equation (9) and equation (10), where &7, is the smallest value &3
satisfying the inequality

(14)

>1-a, (15)
and @7, is the largest value 8}, satisfying the inequality

ig ( A) Z/=l{9(1)} CXP( H(J) /3)

= 271{6’;"} exp( %) /0)

<a, (16)

where §3,---, ) denote the ordered (smallest to largest) EB bootstrap
estimates of 4,,---,6, .

(6) Repeat this process B times.
(7) Obtain the iterated EB bootstrap interval ( G, 6; ) of 6,, where

! * 1B
L=_Ze"+l) and u,-=‘§bZ_:

Thus
Pr[e;se,.seg,i]é,]=1—2a.

2.3 Percentile Bootstrap Confidence Interval

Efron(1981a, b) introduced the percentile method which constructs approximate
confidence interval for @ based on the sampling distribution of bootstrap
estimator of @. This approximate confidence interval by percentile method is
called percentile interval. Let us construct the EB percentile interval of 6, using
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the type II nonparametric bootstrap. Then 100(1 — 2a)% percentile interval for is
6, approximated by the following steps.

(1) Construct the first EB bootstrap estimator 6 ’as the same marginal
procedure(Laird and Louis(1987)) in equation (14) from the b-th bootstrap
samples. That is,

ot = ZL 6"(ri+1). exp(-— Hi‘ri/ é.)
L 6 exp(-6/8)

Construct the iterated EB bootstrap estimator 6% in the same way as Ok
in equation (6). That is,

- 2 17
2400} exal- 01 /6)

(3) Repeat this process B times.

(4) Compute the 100a empirical percentiles & () and the 100(1-a)
empirical percentile ;% (1—«) of 8% respectively, where 6L () is the
Ba -th value in the ordered list of the Breplications of 2, b=1,2, .-, B.

(5) Approximate 100(1-2a)% percentile interval for 0. by
(6% (@), 612,01~ 2)).

3. Comparisons and Conclusions

The iterated EB confidence intervals are approximated by Monte Carlo method.
In each iteration, we generate 6,, i=1,---, N (= 10) , from IMSL subroutine
RNGAM. Given the &,’s, we generate tys J=1,--, n(= 10, 20, 40), from IMSL
subroutine RNWIB and a fixed shape parameter S =2. We order the variables
th<tn<---<tiy, and compute S, = (10- r)t,-f + Z; t,f (Note that we assume
rr=r for all i). We consider the censoring rates (CR) defined by
100(1 —r/ n)% of 0%,30%, and 50% . For given independent random samples
the iterated EB confidence intervals are computed by each method with bootstrap
replications B =1000 times. And the Monte Carlo samplings are repeated 1000
times. The criteria used to compare the EB interval are coverage probability and
expected interval length, where the probability and length refer to the distribution
of § in equation (2). Let CP denote the coverage probability for @ and we
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consider nominal coverage probability of 090(e = 0.05). Let 8, and 8, be the
lower limit and the upper limit of EB confidence interval for 6, respectively. And
we define EL by

=%f( 6,) a8)

where R is the number of Monte Carlo simulation replications. The results of
these simulations are presented in Table 1. To asses the CP and the EL of the
naive and two bootstrap intervals for the sample sizes »=10,20,40, when the
CR changes, we observe Table 1 for the shape parameter 8= 2. We can observe
the followings:

(1) For all the sample sizes and censoring rates, the CP’s of two bootstrap
intervals are more accurate than those of the naive intervals.

(2) As n increases, the percentile bootstrap interval tends to achieve the
nominal coverage probability.

(3) For all the sample sizes, the EL’s of two bootstrap intervals are longer than
those of naive intervals.

(4) As expected, the naive interval fails to achieve nominal coverage probability
and is very poor for EL’s evenif n increases.

Table 1. Comparisons of EB Naive and Bootstrap Intervals

When f =2 (Raleigh case) and o = 0.05

Censoring rate = 0%

Interval n=10 =20 n=40
method Coverage Length | Coverage Length | Coverage Length
Naive 0.432 1.952 0.572 1.604 0.601 1.072
Laird & Louis 0.678 2.790 0.784 1.842 0.841 1.177
Percentile 0.891 3.805 0.902 2.619 0.903 1.854
Censoring rate = 30%
Interval n=10 n=20 n=40
method Coverage Length | Coverage Length | Coverage Length
Naive 0.525 2274 0.620 1.822 0.604 1.336
Laird & Louis - 0.769 3.942 0.823 2.388 0.848 1.521
Percentile 0.865 5.431 0.898 3.169 0.909 2.215
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Censoring rate = 50%

Interval n=10 n=20 n=40
method Coverage Length | Coverage Length | Coverage Length

Laird & Louis 0.780 4.556 0.827 2.804 0.851 1.812

Naive 0.545 2.341 0.574 1.894 0.560 1.493

Percentile 0.858 6.319 0.892 3.851 0.902 2.555

[u—
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