• 제목/요약/키워드: Interpolation method

검색결과 1,891건 처리시간 0.027초

보간법을 이용한 디지털 방사선영상에서 치아 및 지지구조물의 ROC평가 (Evaluation of Teeth and Supporting Structures on Digital Radiograms using Interpolation Methods)

  • 고광준;장기완
    • 치과방사선
    • /
    • 제29권1호
    • /
    • pp.65-85
    • /
    • 1999
  • Objectives: To determine the effect of interpolation functions when processing the digital periapical images. Material and Methods: The digital images were obtained by Digora and CDR system on the dry skull and human subject. 3 oral radiologists evaluated the 3 portions of each processed image using 7 interpolation methods, and ROC curves were obtained by trapezoidal methods. Results: The heighest Az value(0.96) was obtained with cubic spline method and the lowest Az value(0.03) was obtained with facet model method in Digora system. The heighest Az value (0.79) was obtained with gray segment expansion method and the lowest Az value(0.07) was obtained with facet model method in CDR system. There was significant difference of Az value in original image between Digora and CDR system at a=0.05 level. There were significant differences of Az values between Digora and CDR images with cubic spline method, facet model method, linear interpolation method and non-linear interpolation method at α=0.1 level.

  • PDF

PMSM 토크제어를 위한 보간오차 보상방법 (Interpolation Error Compensation Method for PMSM Torque Control)

  • 이정효
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.391-397
    • /
    • 2018
  • This paper proposes a interpolation error compensation method for PMSM torque control. In PMSM torque control, two dimensions look-up table(2D-LUT) is used for current reference generation due to its stable and robust torque control performance. However, the stored data in 2D-LUT is discreet, it is impossible to store all over the operation range. To reduce the reference generation error in this region, the 2D-Interpolation method is conventionally used, however, this method still remains the error affected by the number of stored data. Besides, in the case stored by fixed unit, this error is increased in field weakening region because of the small number of stored data. In this paper, analyzing the cause of this interpolation error, and compensating the method to reduce this error. Proposed method is verified by the simulation and experiment.

An Edge Profile Adaptive Bi-directional Diffusion Interpolation

  • ;손광훈
    • 방송공학회논문지
    • /
    • 제16권3호
    • /
    • pp.501-509
    • /
    • 2011
  • In this paper, we propose an edge profile adaptive bi-directional diffusion interpolation method which consists of shock filter and level set. In recent years many interpolation methods have been proposed but all methods have some degrees of artifacts such as blurring and jaggies. To solve these problems, we adaptively apply shock filter and level set method where shock filter enhances edge along the normal direction and level set method removes jaggies artifact along the tangent direction. After the initial interpolation, weights of shock filter and level set are locally adjusted according to the edge profile. By adaptive coupling shock filter with level set method, the proposed method can remove jaggies artifact and enhance the edge. Experimental results show that the average PSNR and MSSIM of our method are increased, and contour smoothness and edge sharpness are also improved.

이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법 (Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

Kriging 보간법에 의한 응력 평활화 (Stress Smoothing by Kriging Interpolation)

  • 이동진;홍종현;이채규;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.317-324
    • /
    • 2003
  • Kriging interpolation is one of the gennerally used interpolation techniques in Geostatics field. This research refers to the contents about important experimental variogram and the study of theoretical variogram and formulation of Kriging interpolation. Kriging interpolation is applied as interpolation for stress smoothing in finite element method. Posteriori error estimation which makes use of stress smoothing from the FEM is very important part, we try to make practical application of surface regeneration ability from Kriging interpolation. This research is necessary preceding one in order to materialize adaptive FTM through posteriori error estimation. For instance, find the estimate value and estimate the propriety through various theoretical variogram models of the reference analyzed from tensional L-shape domain. It also provides possibility of the Kriging interpolation through comparing to existing Least square method as well.

  • PDF

가중치 윤곽선 검출기를 이용한 저 복잡도 하이브리드 보간 알고리듬 (Low Complexity Hybrid Interpolation Algorithm using Weighted Edge Detector)

  • 권혁진;전광길;정제창
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.241-248
    • /
    • 2007
  • 예측(predictive) 이미지 코딩에서는 최소 자승법을 기반으로 하는 적응적인 예측기가 에지 주변에 있는 픽셀(pixel)의 예측 결과를 향상시키는데 효과적인 방법으로 알려져있다. 본 논문에서는 가중치 윤곽선 검출기 (weighted edge detector)를 이용한 하이브리드 보간 알고리듬(hybrid interpolation algorithm)을 제안한다 전체적인 계산의 복잡도를 감소시키기 위해서 2차원 선형 보긴(bilinear interpolation)과 에지 방향성을 이용한 보간(edge directed interpolation) 알고리듬을 선택적으로 적용시키는 하이브리드 접근방법을 이용한다. 이런 접근 방법을 2차원 선형 보간 알고리듬과 에지 방향성을 이용한 보간 알고리듬을 적용했을 경우와 비교하기 위해서 PSNR과 SSIM 측정값을 이용하여 객관적이고 주관적인 영상의 화질 비교는 제안한 알고리듬이 비슷한 성능을 나타냄을 보여준다. 또한 제안하는 가중치 윤곽선 검출기를 이용한 하이브리드 보간 알고리듬은 정규화된 CPU 수행 시간을 에지 방향성을 이용한 보간 알고리듬과 비교하면 최대 20배의 복잡도 감소 효과를 얻을 수 있다.

적응적인 매개변수가 적용된 3차 회선 보간법을 통한 영상 확대 (An Enhanced Image Magnification by Interpolation of Adaptive Parametric Cubic Convolution)

  • 김윤
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.27-34
    • /
    • 2008
  • The purpose of this paper is an adaptive image interpolation using parametric cubic convolution. Proposed method derive parameter of adapting the frequency from adjacent values. The parameter optimize the interpolation kernel of cubic convolution. Simulation results show that the proposed method is superior to the conventional method in terms of the subjective and objective image quality.

  • PDF

B-spline 곡면보간을 위한 parameter 결정에 관한 연구 (Parametrization in B-spline Surface Interpolation)

  • 정형배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.957-960
    • /
    • 1995
  • A new method is introduced for the parametrization in B-spline surface interpolation. THis method uses the basis function to assign the parameter values to the arbitrary set of geometric data. This method gives us several important advantages in geometric modeling.

  • PDF

엄밀한 동적 요소를 이용한 유한 요소 동적 모델의 개선 (Improvement of the finite element dynamic model by using exact dynamic elements)

  • 조용주;김종욱;홍성욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.590-595
    • /
    • 2001
  • To improve the modeling accuracy for the finite element method, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for a Timoshenko beam element are derived and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. The exact interpolation functions are used to gain more accurate mode shape functions for the finite element method. This paper also presents a combined use of finite elements and exact dynamic elements in design problems. A Timoshenko frame with tapered sections is tested to demonstrate the design procedure with the proposed method.

  • PDF