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Estimation of Mean Using Balanced Systematic
Sampling and Interpolation for Population with
Linear Trend'

Hyuk Joo Kim!

ABSTRACT

A new method is developed for estimating the mean of a population
which has a linear trend. The proposed estimator is based on the balanced
systematic sampling method and the concept of interpolation. The efficiency
of the proposed method is compared with that of existing methods.

Keywords:  Population with a linear trend ; Balanced systematic sampling ;
Interpolation ; Infinite superpopulation model.

1. Introduction

When conducting statistical surveys, we sometimes meet with a population
which has a linear trend. For example, suppose we wish to estimate the average
sales of the supermarkets in a certain city. If the supermarkets in that city are
arranged in increasing or decreasing order of the number of employees, we can
expect that there will be a linear trend in this population.

In estimating the mean of a population which has a linear trend, ordinary sys-
tematic sampling (OSS) is known to be much better than simple random sampling
(SRS). Several researchers have suggested sampling methods which are versions
of systematic sampling. Among them, end corrections (EC) proposed by Yates
(1948), centered systematic sampling (CSS) proposed by Madow (1953), bal-
anced systematic sampling (BSS) proposed by Sethi (1965) and Murthy (1967),
and modified systematic sampling (MSS) proposed by Singh et al. (1968) are
well-known methods.

Recently, Kim (1998, 1999) proposed two methods for the case when n (the
sample size) is an odd number (n > 3) and k (the reciprocal of the sampling
fraction) is an even number. These methods, one using MSS and interpolation
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and the other using BSS and interpolation and extrapolation, turned out to be
relatively efficient as compared with conventional methods in many cases.

In this paper, we propose another method for efficiently estimating the mean
of a population which has a linear trend. The linear trend will be specified by
using a mathematical expression in Section 3. The proposed method, based on
BSS and the concept of interpolation, will be developed for use in the case when
n is an odd number (n > 5) and & is an even number, and will be compared with
several existing methods under the expected mean square error criterion based
on the infinite superpopulation model introduced by Cochran (1946).

2. Proposition of the method

Suppose we have a population of size N = kn, the units of which are denoted
by Ui, Us,- - -,Un. We wish to select a sample of size n from this population.

First, let us briefly review the balanced systematic sampling (BSS) method.
This sampling method, proposed by Sethi (1965) and Murthy (1967) as stated in
the previous section, was developed for populations having linear trends.

BSS selects one of the & clusters C’i, C’é,- - CJ,’c with respective probability
1/k, and then estimates the population mean by the sample mean, 7,,;, which is
the mean of the selected cluster. Here the cluster C; is defined by

'

Ci = {Ui+2(j——1)k: .7 = 1725 " 7n/2} u {Uij+1—i : .7 - 172:' . ,TL/2}
((=1,2,--k)

for n even, and

Ci = {Uiag-1k:d =12, (n+1)/2} U{Usjppr-i: 5 = 1,2, -, (n — 1)/2}

(Zzlazaak)

for n odd. For example, if N =28, n =7 and k = 4, then the four clusters are
as follows :

Cy = {U1,Us, Uy, Ug,Urz,Uss, Uss}

Cy = {Uz,Uy,Urg,Uis,Uig, Uas, Uzg }
C3 = {U3,U67U11,U14,U19,U22,U27}
Cy = {U4,Us,Ur2,U13,Up, Ui, Uss}.
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The sample mean 7y,,; obtained by BSS is easily seen to be an unbiased estimator
of Y, the population mean, with variance

k
_ 1 R p—
V(Gar) = ¢ > @ -7,
i=1
where y; is the mean value for the units in C’;- (t=1,2,-- k).

Throughout this paper the following notation will be used :
y; : value for the sth unit in the population (i = 1,2, --, N),
- 1 . .
Y = N Z y; : population mean to be estimated,
i=1
y;j : value for the jth unit in Cé (i=1,2,--k; 7=1,2,---,n), that is,

Yij = Yirg-nk G=1,3,5,--,n—1)
Yis = Yl~itjk (.7 = 2747'6a te ',’I’L)
for n even, and
y;j = Yiyg-1k 0 =1,3,5-n)
Yij = Yl—itjk (J=2,4,6,--,n-1)
for n odd
Zy” : mean for the units in C (i=1,2,--k).
] =1

Now we are in a position to introduce a new method for estimating the pop-
ulation mean Y. This method involves the same sampling method as BSS, but
it estimates Y by an adjusted estimator, not by the sample mean itself. We only
consider the case when n is an odd number (n > 5) and k is an even number,
because the method is defined and has a practical meaning in this case.

Consider again the case of N = 28, n =7 and k = 4. One of C}, C5, Cj, C4 is
selected with respective probability 1/4. We notice that the sums of the numbers
assigned to the units in Ci, C'é, Cé and C’; are, respectively, 100, 101, 102 and 103,
showing differences ranging from 1 to 3. When the population has a linear trend,
it would be desirable to remove such differences. Our idea is to replace yg, y1g, Y11,
or yi2 by "y105" (or, alternatively, to replace y17,y18,¥19, Or ¥20 by "7185”)
according as Oi,C’é,Cé, or C; is selected. Here y195 and 1185 are imaginary
values which do not actually exist.
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If Ci is selected, then we can ”estimate” y195 by use of yg and y16- By the
interpolation method, y10.5 is estimated by (1/14)(11ys + 3y1). Therefore, by
using this value in place of yg, we can estimate Y by

, 1 1
77 (3) = —{yl +ys + ﬂ(llyg + 3y16) + Y16 + Y17 + You + Y25}
= Tt (e~ )
= yl 98 Yi6 — Y9
/ 3

= Ut @(ylm —Y13).

Here the number ’3’ in the parentheses means that this estimate, y’l*(3), is ob-
tained by using an adjusted value instead of the third value in . Instead of
estimating y10.5, we may estimate ;g5 by using 17 and y24, and use the resultant
value in place of y17.

Suppose now that the selected cluster is C’é. Then by applying the interpola-
tion method to ys and y11 to estimate y10.5 and using the resultant value in place
of y11, we can estimate Y by

' 1 1
73 (3) = —{y3 + yg + E(yﬁ + 9y11) + Y14 + Y19 + yo2 + yor}
1
= Ty — %(yu — Y6)
' 1

= Y3~ “76(9;33 — Y39)-

Alternatively, we may estimate y135 by using 14 and 719, and use the resultant
value in place of y9.

Similar arguments enable us to estimate Y when C/ or C’:l is selected.

The above method can be generalized as follows. One of the % clusters C’l, Cy,

C’,c is selected with respective probability 1/k. If the selected cluster is C , then
the population mean Y is estimated by one of 7 7,5(3), 74 (5), - - LT (- 2)(w1th
respective probability 2/(n — 3)), where

% _ 1 k + ]. — 2’L ’ 7 _

fori=1,2,---,k/2, and

Iy o 20—k—1 ’ .
v (m) = 7, m(yim Yim—1)(m = 3,5,- -, n — 2)

fori =k/2+1,k/2+2,- - k.
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Let us denote this method and the resultant estimator of ¥ as BI and ybl,
respectively. Then 7, is biased for Y and it is easy to show that 7j,; has bias

B(¥y) = ZZ

'le

and mean square error

MSE(gy,) = k(% ZZ{yz (m) — Y}2

i=1 m

Here and hereafter ) = means summing over m = 3,5,---,n — 2.
3. Expected mean square error of ¥,

In this section, the expected mean square error of ¥, is obtained by using
Cochran’s (1946) infinite superpopulation model.

We regard the finite population as a sample from an 1nﬁn1te superpopulation.
First, as a general case, we set up the model as ‘

Yi = Wi t+e; (’L'Zl‘,Q,-“,N), ’ (31)

where u; is a function of 7 and the random error e has properties £(e;) =
0, £(e2) = o2, E(ejej) = 0 (¢ # 7). The operator £ denotes the expectation
over the infinite superpopulation.

From now on, with regard to y and e also we will use the same style of notation
as adopted for y. That is,

1 N
TS NZ”ia
=1 ‘
M;:j = pit-k (9=1,3,5,--n),
1 7
By = —Zﬂij,
7 4
Jj=1
_! ! k+1—2’l; ! ! i '
/’L'L*(m) = M + 2n(2k +1— 22) (lu‘i,m+1 - /”'im)(Z = 1a2a te '7k/2;m = 3a57 R 2))
and so on.

The following theorem is very 1mportant in evaluating the efliciency of ;.
The proof of this theorem is given in Appendix.
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Theorem 1. Assuming the model (3.1), the expected mean square error of Ty,
for k even and n odd (n >5) is

02 N —n
EMSE(Gy) = ZZ{ —BP =
i=1 m
2
o
+ 55 (1 — 445 + 2k By) (3.2)
where
k)2
1 1 1 kE+1
Ae = ;2k+1—2i —§{¢ <k+§> —1/’(—2_)}
k)2
1 1 1 k+1
- = — =D IR ) Y
B ;(2k+1—2i)2 4{7’[’ <k+2) v < 2 )}
P(z) = Zidg InI'(z) (z > 0) : the polygamma function
I'z) = /0 t*te~tdt (x> 0) : the gamma function
‘ d
W@ = L)

Now, let us consider the case of y; = a+ bi, where a and b are constants with
b # 0. In other words, the assumed model is

Y = a+bi+e; (’I:=1,2,---,N). (3.3)

This is the case of a population which has a linear trend.
In this case, as a preparatory stage for obtaining €M SE(ybl) we get the fol-
lowing formulas :

I=a+ (g) (N +1) (3.4)

;= a+ (g) (N+1)+ (%) (z - %) (3.5)

Mimi1 = 1—it(miye = 6+ {1 —i+ (m+ 1)k} (3.6)
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Hhiyn, = Bit(m—1)k = 6+b{i+ (m —1)k} (3.7)
Him—1 = Plit(m-typ = 6+ b0{1 =i+ (m — 1)k} (3.8)

Thus we have, for i = 1,2, - -  k/2,

- _ k -+ 1—2¢ ’ ’

=a+ (g) (N +1), o (3.9)

and for i =k/2+1,k/2+2,-- -k,

e _ 2%—k—-1, '
it (m) =1; — m(ﬂim =t 1)

coe (B 0

Now using (3.4), (3.9), (3.10) and the result of Theorem 1, we obtain the follow—;
ing theorem : ‘

Theorem 2. For a population characterized by (3.3),‘the ezpected mean square
error of Yy, 18

_ 02N —n o2
EMSE(ybi)=—n_ ~ +§g§(

where Ay and By are as defined in Theorem 1.

1— 44, + 2kBy)(k : even, n: odd, n > 5), (3.11)

4. Comparison of efficiency with other methods

In this section, the efficiency of 7, is compared with that of estimators‘result‘-
ing from other methods. First, let us consider SRS, OSS, MSS, BSS and CSS.
Discussions on comparisons of the performances of 0SS, MSS, BSS and CSS were
also given in Bellhouse and Rao (1975). ,

For a population characterized by the model (3.3), the following were obtained
in Singh et al. (1968) and Kim (1985):

N-—-n
N

EMSE(Yprpn) = <ﬁ> (N+1)(k-1) +%2 (4.1)

12
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_ b2 02N —n
EMSE(T,,,) = (E) (k+ 1) (k= 1)+ —— (4.2)
b 2N —
SMSE(ymod) — EMSE(gbal) = (W) (k+1)(k—1>+%‘ n (T'LZ Odd) (43)
_ 2 o*N-—-n
EMSE(ycen) = Z + ‘E N (k: . even) (44)

Here Y, qn; Usyss Ymods Jbal @0d Jeen denote the sample mean, which is used as the
estimator of Y, obtained from SRS, OSS, MSS, BSS and CSS, respectively.

On the basis of formulas (3.11) and (4.1) through (4.4), we can arrange the
methods under consideration according to the magnitude of the expected mean
square error as the following theorem. For simplicity’s sake, EM SE () is abbre-
viated as "bi”, EMSE(T,,,) as ”sys”, and so on. Thus, for example, "bi < sys”
means that BI is more efficient than OSS.

Theorem 3. For a population having a linear trend represented by (8.3), the
following hold (Here Ty =1 — 4Ay, + 2kBy):
(1) The case of k =2 and n =3,5,7,- - -

(i) If a® < 9b%/2, then bi < mod = bal < cen = sys < ran.

(i3) If 9% /2 < 02 < 9b%n? /2, then mod = bal < bi < cen = sys < ran.

(i33) If 9°n?/2 < 02 < 3b2n2(N +1)/2, then mod = bal < cen = sys < bi <
ran.

(iv) If 3b°n%(N +1)/2 < 02, then mod = bal < cen = sys < ran < bi.

(2) The case of k =4,6,8,--+, n=3,5,7,--- andn < 1/(k* —1)/3

(i) If 02 < b?n? /2Ty, then bi < cen < mod = bal < sys < ran.

(ii) If B*n? /2Ty < 02 < b*(k* — 1)/6T}, then cen < bi < mod = bal < sys <
ran.
(i5i) If b2 (k2 — 1) /6Ty < 0% < b*n2(k% —1)/6T}, then cen < mod = bal < bi <
sys < ran.

(iv) If ¥®*n?(k? — 1)/6T; < 0% < b*n?(N + 1)(k — 1)/6T}, then cen < mod =
bal < sys < bt < ran.

(v) If ®*n2(N +1)(k — 1) /6T < 02, then cen < mod = bal < sys < ran < bi.
(8) The case of k = 4,6,8,--+, n=23,5,7,--- andn = \/m (for example,
k=26 andn=15)

(i) If 0? < b?n?/6T%, then bi < cen = mod = bal < sys < ran.

(i) If B2n? /6T < 02 < b?n%(k? — 1)/6T), then cen = mod = bal < bi <
sys < ran.
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(iii) If ¥*n2(k? — 1)/6T; < 02 < b®n?(N +1)(k — 1)/6T}, then cen =mod =
bal < sys < bi < ran. ‘

(i) If ?’n?(N +1)(k—1)/6T) < o2, then cen = mod = bal < sys < ran < bi.
(4) The case of k =4,6,8,---,n=3,5,7,--- and n > +/(k? —1)/3

(i) If 0 < b*(k? — 1)/6T}, then bi < mod = bal < cen < sys < ran.

(ii) If (k% — 1)/6T), < 0? < b*n?/2T}, then mod = bal < bi < cen < sys <
ran.

(i) If b*n2/2T, < o® < bPn2(k? — 1)/6T}, then mod = bal < cen < bi <
sys < ran.

(iv) If ¥*n?(k? — 1)/6T; < 02 < ¥?n?(N + 1)(k — 1)/6T}, then mod = bal <
cen < sys < bi <ran.

(v) If ®’n%(N +1)(k — 1)/6T) < 02, then mod = bal < cen < sys < ran < bi.

Example 1. Suppose that we wish to draw a sample of size n = 25 from a
population consisting of N = 500 units. We have k = 500/25 = 20. Assume
that the slope of the linear trend is b = 0.4. Then by use of Mathematica we get
(20.5) = 2.995836, ¥(10.5) = 2.303001, %(})(20.5) = 0.0499896, 1) (10.5) =
0.0999170, and hence ‘ C

Ay = %{¢(2o.5)—¢(10.5)}=o.346418

By = —i-{zp(l) (20.5) — 9 (10.5)} = 0.0124818
Toy = 1—4A9+ (2)(20)320 = (0.113600.

Therefore, by (4) of Theorem 3, the efficiency of the estimation methods can be
compared as follows : ‘

(i) If 0% < 93.662, then bi < mod = bal < cen < sys < ran.

(ii) If 93.662 < 02 < 440.141, then mmod = bal < bi < cen < sys < ran.

(iii) If 440.141 < 0? < 58538.732, then mod = bal < cen < bi < sys < ran.

(iv) If 58538.732 < 02 < 1396566.901, then mod = bal < cen < sys < b1 <
Tamn. |

(v) If 1396566.901 < o2, then mod = bal < cen < sys < ran < bi.
We can see from this example that BI is relatively efficient as compared with
other methods unless o2 is preposterously large.

Now let us compare BI with methods which estimate Y by a weighted mean,
not by the simple mean, of the sample values. The methods and the expected
mean square errors of the resultant estimators are as follows : ‘
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(1) End corrections (EC) (See Yates (1948).)

0? N —n

o2(k? -1
gMSE(gec) = F ( )

N 6k%(n —1)2°

(2) Modified systematic sampling with interpolation (MI) (See Kim (1998).)

_ 02N —n o2
EMSE(Gmi) = 57—+

1
— ) (k:even,n:odd,n > 3),

4= 1245 + 6kBy — 1

where Ay and By, are as defined in Theorem 1.
(3) Balanced systematic sampling with interpolation and extrapolation (BIE)
(See Kim (1999).)
0?’N-n- o%

EMSE(gy,) = — N + 2—n—2(1 — 7 —2In2+4Cy) (k:even,n:odd,n > 3),

where 7 = 0.577215 - -- is the Euler constant, and Cy, = &{n? — 2 (k + 1)} —
Pk + 3).

Theorem 4. Consider the four methods : EC, MI, BIE and BI. For k even and
n(> 5) odd, the following holds :

EMSE(Yy;) < EMSE(7y,;) < EMSE(,,) < EMSE(Yy;,).

This means that Bl is the most efficient of these four methods.

The proof of Theorem 4 is also given in Appendix. For various k, the values
of the second terms of EMSE(:)’s for EC, MI, BIE and BI are given in Table
4.1. Note that the first terms are all the same for the four methods. We can see
again that BI is the most efficient of the four methods.

Table 4.1 The values of the second terms of EMSE(-)’s for EC, MI, BIE
and BI

k EC MI BIE BI

4 | 0.15630%/(n — 1) | 0.10610%/n? | 1.166802/n% | 0.055902/n>
8 | 0.16410%/(n — 1) | 0.110302/n? | 3.28820%/n? | 0.056652/n?
12 | 0.1655¢%/(n — 1)? | 0.11110%/n? | 5.552902/n? 0.05670% /n?
16 | 0.16600%/(n — 1) | 0.111402/n? | 7.876502/n? | 0.056802/n>
20 | 0.166302/(n —1)% | 0.111502/n? | 10.23240%/n? | 0.056802 /n?
oo | 0.16670%/(n — 1)? | 0.111702 /n? 0o 0.056902 /n?
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Example 2. The following data for a small artificial population were adopted:
from Cochran (1977, p.211). Some modification has been made to the original
data in order to make k even and n odd. We draw a sample of size n = 9 from
this population of size N = 36.

1 2 5 4 7 7 8 6 6 8
9 10 13 12 15 16 16 17 18 19
20 20 24 23 25 28 29 27 26 30
31 33 32 35 37 38

The mean of this population is Y = 18.2500. As we can see from Figure 4.1, this
population is exhibiting a linear increasing trend. The MSEs of the estimators
of ¥ by the existing methods are
MSE(Y,.,) = 9.8351, MSE(y,,s) = 1.9653, MSE(Ym0q) = 0.1875,
MSE () = 0.1875, MSE(Y,e,) = 1.0224, MSE(y,,) = 0.2667,
MSE(,;) = 0.2446,  MSE(g,;,) = 0.2831. |
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Figure 4.1 : The population in Example 2
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On the other hand, using BI proposed in this paper, Y is estimated by one of
the following twelve values :

7 (3) = 17.7937, 7 (5) = 17.7222,  4,*(7) = 17.7460,
T (3) = 18.7444, 7 (5) = 18.7444, 7 (7) = 18.7000,
77 (3) = 18.5333,  7.°(5) = 18.4889,  7,*(7) = 18.4556,
74 (3) = 18.1508, 7, (5) = 18.0794, 7 (7) = 18.0556.

Therefore, the MSE of our estimator 7,; is computed as
MSE(7,;) = 0.1407,

which shows that BI is the most efficient of the methods considered.

5. Concluding remarks

In this paper, we proposed a new method for estimating the mean of a pop-
ulation of size N = kn which has a linear trend, for the case of ¥ even and n
odd (n > 5). The proposed method, BI, consists of selecting a sample of size
n by BSS, and then estimating the population mean by using the concept of
interpolation.

BI turned out to be relatively efficient as compared with the conventional
methods if 02, the variance of the random error term in the infinite superpopula-
tion model, is not preposterously large. It was found to be especially efficient as
0? becomes smaller. Moreover, BI was found to be more efficient than EC, MI
and BIE.

APPENDIX
(1) Proof of Theorem 1
We know that
2 <& _
MSE(gy) = (n—3) Z Z{?i* (m)-Y}, (A.1)
i=1 m

and by (3.1) we obtain
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Y=r@+e (A.2)
On the other hand, from (3.1) it can be written that |
yij =gty (1=1,2,-k; j=1,2,---n), (A.3)
from which we obtain

7 (m) = B (m)+8*(m) (i = 1,2, k;ym = 3,5,-,n—2), (A.4)

Substituting (A.2) and (A.4) into (A.1) and taking expectation, we have

EMSE(ybz - ZZ [{ (-é;*(m)——é)}z]
~ k(n-3) ZZ{ #}2+5{( *(m)—e)*}]. (A.5)
i=1 m

We also have, for 1 = 1,2, -, k/2,

E[{ey* (m) — }?] = E[{E; — &+ Fi(m)}?]
= E{(e, — ©)?} + 2&{(e;, — ®P;(m)} +
E{P}(m)}, (A.6)
where
k+1—2i ’ ,

Pi(m) = (O + 1 = %) (€ m+1 = €im)- (A7)
We further have, for i =1,2,- -+, k/2,

E{(E; — )} = E{(€)°} — 26 (@) @)} + £{@)?) (A.8)

and
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j=1 3<s’
n2 I:ZE{ 'LJ }+2Z€{ 'LJ zg :l
i<s’

ﬁ(na +0) (by the assumptions on the model)

2
g

and similarly
7 —\2 0'2
)@} =) = & (A.10)

The second term in the rightmost side of (A.6) is easily shown to be zero, and
the third term is also easily obtained as

(k +1 — 2i)?%0?

2 =
EFA(m)} MZ(2k + 1 — 2)2° (A-11)
Substitution of these results into (A.6) gives
2 N2 2
vz TN —n  (k+1-20)%0%
Fori=%k/2+1,k/2+2,- -k, we obtain
_ry a N-n (2i—k—1)%?
El{e(m)—e)?] = Nt omd@io 1 (A.13)

by quite a similar method to that used in the above.
Substituting (A.12) and (A.13) into (A.5), we have

EMSE(gy) = Z > {m(m) - )
i=l m
&2 crN—n (k+1—2i)%
+Zz_;;{ 2n2(2k+1 22)2}

O'N n 20—k —
I D pita LN ELEY 0

i=k/2+1 m
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o 2N —n
ZE{ -+

z—l m
o2 k/2 k L
2 ' —
2kn2{z 2k+1 21) + Z (1 27,—1)} (A 14)

i=k/2+1

and by using the following facts concermng summation (See, for reference, Abramowitz
and Stegun (1982, p.258)), we obtain (3.2) after straightforward calculation.

k/2 k

1 1 1 k+1
22k+1—22 2 2¢~1:§{¢</€+§>”¢( ) )}
i=k/2+1
k/2 k
1 1 1 1 k+1
_ — 2y 2) M -
;(%ﬂ—m)?”izgﬂ(zz’—lﬂ* 4{¢ (k+2> v ( 2 )}

(|

(2) Proof of Theorem 4
We prove here the first inequality : EMSE(g,,;) < S MSE(Y,,;). The remain-
ing inequalities can be proved by quite similar methods. |
We have ‘
EMSE(Gp) ~EMSE(Gy) = 125 (1245~ 6kBy ~2— ). (A.15)
Using the fact that :

k

1
Ap= ) gy and Bi= Z (1—1)

i=k/2+1 i=k/2+1

the quantity in the parentheses of the righthand side of (A.15) can be written as

124, — 6kBy — 2 — k12
_ Z { 6k _é_l}
B 22—1 (26 —-1)2 k k3

i=k/2+1
B i 123(26 — 1) — 6k% — 4k2(25 — 1)2 — 2(2i — 1)2
i=k/2+1 k-1
K (—16k2 — 8)i2 + (24K + 16k2 + 8)i — 6k — 12k5 — 4k? — 2

= > k(2 — 1)2

i=k/2+1
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Let us consider the numerator in the last expression. Since the coefficient of 2
is negative, the numerator takes its minimum at 1 = k/2+ 1 or at ¢ = k; and the
values taken by the numerator at these two values of 7 are 2k* +4k3 — 6k2 — 4k —2
(at i = k/2+1) and 2k* +4k3 — 12k% + 8k — 2 (at ¢ = k). Since both of these two
values are positive for k > 2, we can easily see that the numerator is positive for
each i, from which it follows that EMSE(gy;) < EMSE(F,,;).

: O
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