• Title/Summary/Keyword: Interpolation accuracy

Search Result 456, Processing Time 0.024 seconds

Dynamic Analysis of the Pantograph of a High-speed Electrical Train Considering Contact and Separation (고속 전철 급전기의 접촉 분리를 고려한 동역학적 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.634-642
    • /
    • 2006
  • For the analysis of dynamic contact between a catenary and a pantograph of high-speed electrical train, the numerical solution of the equations of motion of the vehicle pantograph and the catenary system subjected to the contact condition is obtained. The whole equations of motion of the catenary and the pantograph are simultaneously time integrated with the strict application of the contact condition. For the stability of the numerical solution, with the cubic spline interpolation of the catenary displacement, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Especially it is shown that the Coriolis and centripetal accelerations are critical for the accuracy and stability of the computation.

Geostatistical Integration of Different Sources of Elevation and its Effect on Landslide Hazard Mapping

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 2008
  • The objective of this paper is to compare the prediction performances of different landslide hazard maps based on topographic data stemming from different sources of elevation. The geostatistical framework of kriging, which can properly integrate spatial data with different accuracy, is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation and slope maps derived from different data yielded different prediction performances for landslide hazard mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of only sparse spot heights showed the worst prediction performance.

Proposed approach for determination of tributary areas for scattered pressure taps

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.617-627
    • /
    • 2013
  • In wind load calculations based on pressure measurements, the concept of 'tributary area' is usually used. The literature has less guidance for a systematic computational methodology for calculating tributary areas, in general, and for scattered pressure taps, in particular. To the best of the author's knowledge, there is no generic mathematical equation that helps calculate the tributary areas for irregular pressure taps. Traditionally, the drawing of tributary boundaries for scattered and intensively distributed taps may not be feasible (a time and resource consuming task). To alleviate this problem, this paper presents a proposed numerical approach for tributary area calculations on rectangular surfaces. The approach makes use of the available coordinates of the pressure taps and the dimensions of the surface. The proposed technique is illustrated by two application examples: first, quasi-regularly distributed pressure taps, and second, taps that have scattered distribution on a rectangular surface. The accuracy and the efficacy of the approach are assessed, and a comparison with a traditional method is presented.

In-Plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Kim, Chang-Boo;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1379-1388
    • /
    • 2008
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be accurately analyzed. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk which is rotating at constant angular velocity are determined by non-linear equations formulated using 1-dimensional finite elements in radial direction. The equations of the in-plane vibrations at disturbed state are also formulated using 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of the annular disk are used as the interpolation functions of 1-dimensional finite elements in radial direction. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

A Scheme for Computing Time-domain Electromagnetic Fields of a Horizontally Layered Earth (수평다층구조에 대한 시간영역 전자기장의 계산법)

  • Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • A computer program has been developed to estimate time-domain electromagnetic (EM) responses for a onedimensional model with multiple source and receiver dipoles that are finite in length. The time-domain solution can be obtained by applying an inverse fast Fourier transform (FFT) to frequency-domain fields for efficiency. Frequency-domain responses are first obtained for 10 logarithmically equidistant frequencies per decade, and then cubic spline interpolated to get the FFT input. In the case of phases, the phase curve must be made to be continuous prior to the spline interpolation. The spline interpolated data are convolved with a source current waveform prior to FFT. In this paper, only a step-off waveform is considered. This time-domain code is verified with an analytic solution and EM responses for a marine hydrocarbon reservoir model. Through these comparisons, we can confirm that the accuracy of the developed program is fairly high.

Semi-analytical Annular Mindlin Plate Element for Out-of-plane Vibration Analysis of Thick Disks (두꺼운 디스크의 면외 진동 해석을 위한 준-해석적 환상 민드린 평판 요소)

  • Kim, Chang-Boo;Cho, Hyeon Seok;Beom, Hyeon Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.588-596
    • /
    • 2012
  • This paper presents a new semi-analytical annular Mindlin plate element with which out-of-plane natural vibration of thick disks can be analyzed simply, efficiently, and accurately through FEM by including effects of rotary inertia and transverse shear deformation. Using static deformation modes which are exact solutions of equilibrium equations of annular Mindlin plate, the element interpolation functions, stiffness and mass matrices corresponding to each number of nodal diameters are derived. The element is capable of representing out-of-plane rigid-body motions exactly and free from shear locking. Natural frequencies of uniform and multi-step disks with or without concentric ring support are analyzed by applying the presented element. Such results are compared with theoretical predictions of previous works or FEA results obtained by using two-dimensional shell element to investigate the convergence and accuracy of the presented element.

Accuracy Improvement of Frame Interpolation Algorithm using Wedge-shaped Block Partitioning (비정방형 블록을 이용한 보간 프레임의 정확도 향상 기법)

  • Jeong, Jae Heon;Jung, Ho Sun;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.85-91
    • /
    • 2015
  • This paper presents a novel frame rate up-conversion (FRUC) algorithm. Existing algorithms, in general, employ rectangular blocks for motion estimation and arbitrary shape of an actual object region cannot be precisely represented. On the other hand, the proposed wedge-shaped block partitioning algorithm partitions a rectangular block into two wedge-shaped blocks using the texture information, which makes better approximation for an actual object region. The wedge-shaped block partitioning algorithm as well as the adaptive motion vector prediction algorithm is used to reliably estimate the actual motion. Experimental results show that the proposed FRUC algorithm is superior to existing algorithms up to 1.988dB in PSNR and 0.0167 in SSIM comparisons.

Development of Topography Restoration Model using Fractal Method (프랙탈을 이용한 지형복원 모형개발)

  • Kwon, Kee-Wook;Ahn, Byung-Gu;Lee, Jong-Dal
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real topography with only a few information about base topography, which can produce almost complete geographic information. Moreover, as a tool for examining the adaptability and efficiency of the model, index of slope range $I_{SR}$, index of surface $I_{SA}$, and index of volume $I_V$ were developed. The model area is respectively set to $75m{\times}75m$, $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, and $1,200m{\times}1,200m$, and then the data obtained by combining the existing interpolation methods and FEDISA model were compared with real measurements. The result of the study showed the adaptability and efficiency of FEDISA model in topography restoration.

  • PDF

A Conservative USCIP Simulation Method for Shallow Water (물 표면 시뮬레이션을 위한 보존적 USCIP법)

  • Jeon, Sejong;Song, Oh-young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • We propose a physical simulation method based on the shallow water equation(SWE) to represent water surface effectively. In this paper, the water which can be represented has a much larger width compared to the depth does not have a large vertical direction flow. In order to calculate the water flow efficiently, we start with the shallow water equation as the governing equation, which is a simplified version of the Navier-Stokes equation. In order to numerically calculate the advection term of the SWE, we introduce a new conservtive USCIP(CUSCIP) method which improves the Constrained Interpolation Profile (CIP) method to preserve the physical quantity while increasing the numerical accuracy. The proposed method is based on Kim et. al.'s Unsplit Semi-lagrangian CIP[9], and calculates advection term with additional constraints on term that consider integral values. The experimental results show that the CUSCIP method is robust to the loss of physical quantity due to numerical dissipation, which improves wave detail and persistence.

Ultrasensitive laser interferometer for precision measurement of small vibration displacement (고감도 레이저 간섭계를 이용한 미소 진동 진폭의 정밀측정)

  • 서상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.440-449
    • /
    • 1988
  • Small vibration displacements may be measured by optical interferometers, based on the Michelson method. The standard Michelson interferometer works well when the mirror displacements are relatively large compared to the optical wavelength. But it does not work for displacements less than approximately a quater of optical wavelength. Several multiple reflection laser interferometers, simply modified standard Michelson interferometer, have been developed to decrease the minimum detectable limits. Among these a relatively simple and easy multiple reflection system is used to measure the small vibration displacements. This multiple reflection system is constructed with a right angle prism and a convex lens. Therefore this system makes it possible to measure a vibration displacement of the small area on the vibrating structure. The fringe interpolation method and curve fitting method are used to determine accurately the small vibration displacements from the measured interference fringe patterns. Also computer simulation technique is used to check the accuracies of these method. According to the results of the computer simulation technique, the curve fitting method is more accurate than the fringe interpolation method. The optically measured results are in good agreement with those of the standard accelerometer with high accuracy and it is possible to measure the peak vibration displacement as small as 9.01nm using multiple reflection system and curve fitting method.