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Abstract : The objective of this paper is to compare the prediction performances of different landslide

hazard maps based on topographic data stemming from different sources of elevation. The geostatistical
framework of kriging, which can properly integrate spatial data with different accuracy, is applied for
generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive
ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation
and slope maps derived from different data yielded different prediction performances for landslide hazard
mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based
on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction
performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of

only sparse spot heights showed the worst prediction performance.
Key Words : Elevation, Landslide hazard, Geostatistics.

1. Introduction

Landslide hazard mapping has been regarded as an
important geoscientific application field of GIS and
remote sensing. Multiple spatial data should be
considered simultaneously to predict future landslide
hazard, since landslide occurrences are related to a
large number of geomorphological and/or
environmental variables (Park and Chi, 2008).
Traditional GIS-based landslide hazard mapping
tasks have focused on how to effectively integrate
multiple spatial data, and many models based on
probability, fuzzy set theory, and artificial intelligence

have been proposed and tested (Chung and Fabbri,
1999; Ercanoglu and Gokceoglu, 2002; Lee ef al.,
2006).

Since data come from various sources, however, they
inevitably have varying degrees of reliability and
accuracy. For example, elevation and slope maps have
been regarded as the most important factors in landslide
hazard mapping, but such maps can be generated from
various data types and sources (e.g. spot heights,
contours). These different elevation data types are
usually used to construct a regular raster of elevation
estimates. Alternatively, digital photogrammetric

techniques can also be applied to aerial photographs
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or satellite-based stereo images. No matter the way in
which such elevation estimates are constructed, they
are inherently uncertain and may affect the associated
slope values and further analyses (Kyriakidis er al.,
1999). Thus, these effects as well as the development
of effective data integration models should be
considered in data integration tasks. To our
knowledge, the effects of input spatial data which
have been integrated for landslide hazard mapping
have not been considered to date.

In this paper, the effects of elevation estimates
derived from different sources are investigated for the
purpose of landslide hazard mapping. Two different
types of elevation estimates, elevation spot heights
and a DEM from ASTER stereo images are first

considered. The spot heights, which are sparsely
sampled but have higher accuracy, are regarded as
hard data in this work. The elevation values extracted
from ASTER can be available at all pixel locations
but are of lower accuracy, and thus regarded as soft
data. A variant of kriging is applied to integrate the
hard data with the abundant soft data. Slope values
are computed from different elevation maps and the
elevation and slope maps were then integrated for
landslide hazard mapping. The associated
performances of different landslide hazard maps are
compared and discussed through a case study of

Boeun area, Korea (Fig. 1).
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Fig. 1. Data processing flow applied in this study.
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2. Study area and data set

A case study was conducted in Boeun area, Korea,
which suffered heavy landslide damage following
intense rainfall events in 1998 (Leet et al., 2008).
Among several GIS layers constructed by Lee et al.
(2008), a landslide location map including 459 past
landslides and an elevation map generated from
ASTER stereo images were only considered to
investigate the effects of terrain-related variables on
landslide hazard mapping. The DEM was generated
from ASTER 3N and 3B bands using the Y parallax,
which comes from correlation analysis between the
3N band image of left side and the 3B image of right

side (Lee er al., 2008). The average elevation error
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reported in Lee er al.(2008) was about 6.88 m by
comparison of a digital topographic map at 1:25,000
scale. In addition, 1292 elevation spot height points
were extracted from the digital topographic map and
were regarded as hard elevation data. The study area
is discretized by a regular raster of 533 by 571 pixels,
with a pixel size of 15m by 15m. The data sets used

in this case study are shown in Fig. 2.

3. Case study
1) Geostatistical integration of different
sources of elevation

Before integrating hard elevation spot height data
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Fig. 2. Data set used in this study, (a) locations of past landslides, (b) ASTER imagery, (c) DEM from ASTER, (d) locations of

elevation spot heights.
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Fig. 3. Scatterplot of elevation values from spot heights and
ASTER-based DEM.

with soft ASTER-based elevation data, we first
examined how strong elevation values from ASTER
were correlated with those at hard spot height
locations. A strong linear relationship (i.e. r ~ 0.96)
could be observed from the scatterplot shown in Fig.
3. From this linear relationship between hard and soft
data, it might be expected that the integration of
ASTER-based elevation would result in the
improvement of accuracy of elevation values
estimated at non-spot heights locations.

As for the integration of sparsely sampled hard
spot height data with exhaustively sampled ASTER-
based data, kriging with an external drift (KED) was
chosen among various multivariate kriging
algorithms. KED is an extension of kriging to
accommodate a linear regression model and a
smoothly varying secondary variable is used to derive
the trend of the primary variable (Deutsch and
Journel, 1998).

Let y(u) be the secondary variable which
corresponds to the ASTER-based elevation value at

location u. Then the trend model m(u) is as follows:
m(u) = ap + a; y(u) 1

The KED estimator of the z variable Zkgp(u) and
the corresponding kriging system are defined as
(Deutsch and Journel, 1998; Goovaerts, 1997):

Zxep@) = 2 AEP W) Z(ug),

A W)Chla - ug) + 150 w) + 1Py )
=Crlug-w),a=1,..n 2)

gizﬁEDao=1

A g = )

where n, l(’,(ED (w), and u are the number of samples,
the kriging weights, and Lagrange parameters,
respectively. Cgr(u) is the covariance of the residual
component.

Unlike simple kriging with varying local means,
the unknown regression coefficients for modeling the
linear relationship between primary and secondary
variables are locally estimated through the kriging
system with each search neighborhood (Goovaerts,
1997). Interested readers should refer to Goovaerts
(1997) and Kyriakidis ef al. (1999) for a detailed
description on KED and geostatistical integration for
digital elevation models, respectively.

For comparison purposes, elevation values at
unsampled locations were estimated through ordinary
kriging (OK) using only the 1292 spot height
elevation data. For OK, experimental variograms of
spot height values were estimated and then variogram
modeling was carried out. For KED, experimental
variograms were estimated from residual values
which can be computed by subtracting ASTER-based
elevation values from spot heights values, and then
modeled. The OK-based elevation map in Fig. 4
shows much smoother patterns of elevation values
than those from ASTER and KED, which is a typical
characteristic of kriging.

Leave-one-out cross validation was carried out to
compare the prediction performances of OK and
KED. In our work, the difference between true and

estimated elevation values was quantified using the

-456-



Geostatistical Integration of Different Sources of Elevation and its Effect on Landslide Hazard Mapping

DEM based on

pot heights

333772.40{

|
‘
1
1

North

|.200

\,150

=

§

325207 .40
2

266825 20

DEM generated from ASTER

333772 40| i
ke

North

East

North

%

4

325207.40

268925.20

258930.20

East

Slope from spot heights based DEM

333772 407

ey
32520740 .. ... -
258930.20

333772.40:

325207 40

333772 40"

325207 401

258930 20

Fig. 4. Elevation and slope maps derived from three different sources of elevation.

mean absolute error (MAE). As expected from Fig. 3,
the integration of soft data which have a strong lincar
relationship with the hard data led to the improvement

of prediction performance (Table 1). The relative

improvement of MAE in percentage of KED over
OK are 27.04 %. This result means that accounting
for ASTER-based elevation data can complement the

sparsely sampled spot height observations and thus
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Table 1. Comparison of the prediction performances of OK and KED

MAE | Relative improvement of MAE*
OK 1247 -
KED 9.10 27.04

* Relative improvement of MAE (%) = (MAEqk - MAEkgp) /
MAEgg X 100

improve the accuracy of elevation values estimated at
non-spot height locations.

For subsequent for landslide hazard mapping
purposes, three slope maps were generated from three
different elevation maps using 1) OK of spot heights
only, 2) ASTER-based DEM, 3) KED of spot heights
and ASTER-based DEM (Fig. 4).

2) Data i_ntegration for landslide hazard
mapping

Landslide hazard maps in the study area were
constructed by integrating different elevation and
slope maps to investigate the effects of different
accuracy arising from different terrain-related maps
on the prediction performance of future landslide
hazard.

The integration methodology consisted of a
likelihood ratio model (Chung, 2006) with empirical
kernel density estimation. For elevation and slop
maps, the respective two empirical density functions
from landslide areas and non-landslide areas were
computed and then the density ratio was taken to
highlight the differences between two empirical
distributions. Note that the spread parameter in the
Gaussian kernel function for density estimation was
experimentally chosen at 2%. Empirical density
functions and likelihood ratio values for the different
terrain-related variables are shown in Figs. 5 and 6. In
the case of elevation, the likelihood ratio values in all
three elevation maps were greater than one, in the
range of elevation values between 180m and 280m
(Fig. 5). This means that most landslides occurred in

areas between those altitudes and thus the probability
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Fig. 5. Empirical density functions and likelihood ratio values of
elevation based on different sources of elevation data.

of landslide occurrence is high for that elevation
range. When comparing the three elevation maps, the
overall patterns from OK and KED are similar, but a
broader distribution of non-landslide areas was
observed in ASTER-based elevation.
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In the case of slope, slope values from OK of spot
heights are located in a narrower range, compared
with the range of ASTER- and KED-based slopes

(Fig. 6). This trend is caused by the smoother values
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Fig. 6. Empirical density functions and likelihood ratio values
of slope based on different sources of elevation data.

of OK-based elevations. That is, similar elevation
values in local neighborhood resulted in small slope
values. In the OK-based slope map, most landslides
occurred in areas where the slope angle falls in the
range between 8 and 28 degrees. On the contrary, the
likelihood ratio values from ASTER- and KED-based
slopes increase according to the slope angle. The only
difference between those two slopes is observed in
areas where the slope value is greater than 48
degrees. From Figs. 5 and 6, we can observe
differences due to the three different sources of
clevation in landslide and non-landslide areas. Such
differences may affect the final integration results and
lead to different prediction performances when it
comes (o landslide hazard mapping.

The likelihood ratio values from elevation and
slope maps were finally multiplied to obtain the joint
likelihood ratio values under the assumption of
conditional independence. These joint likelihood ratio
values were transformed into rank values to visualize
relative hazard levels in the study area (Fig. 7). The
overall patterns of hazard levels in the three hazard
maps are very similar to those of slope values shown
in Fig. 4. Since the slope patterns were computed
from different sources of elevation, it is anticipated
that the prediction performance associated with the

resulting three hazard maps would be different.

3) Validation results

To quantitatively evaluate the prediction
performance of the three different landslide hazard
maps shown in Fig. 7, a cross-validation approach
based on random spatial partitioning of past
landslides was carried out. 459 past landslides were
first randomly divided into 2 groups including 230
and 229 landslides. Then, the landslide hazard map
was generated using group | as the training group and
rank-based relative hazard values at landslide

locations in group 2 that were not used for
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Fig. 7. Landslide hazard maps based on elevation and slope, from: (a) OK of spot heights, (b} ASTER, (c) KED of
spot heights and ASTER elevation. Black dots denote past landslide locations.

constructing the landslide hazard map were computed
and stored. By changing group 1 into group 2, the
same experiment was repeated. Finally, the prediction
rate curve (Chung and Fabbri, 1999) was computed
from relative hazard values at all landslide locations
as a quantitative prediction of future possible
landslides.

The cross-validation results based on different
sources of elevation are shown in Fig. 8. The best
prediction performance was obtained from KED-
based elevation and slope. The map of elevation

constructed using OK of spot heights only showed

the worst prediction rate values. If the most hazardous
10% of the area is considered, then about 24% of the
landslides are located in the KED-based landslide
hazard map. In the case of ASTER- and OK-based
hazard maps, about 21% and 16% of landslides are
located in that area, respectively. When interpreting
the prediction rate curve, the prediction rate values in
the upper most categories (e.g. top 20% area) are of
greatest interest. The superiority of the KED-based
hazard map can be easily found in the pattern of the
prediction rate curve within the top 30% shown in

Fig. 8(b). By using elevation estimates which can

—460—



Geostatistical Infegration of Different Sources of Elevarion and ifs Effect on Landslide Hazard Mapping

Prediction rate curve

Prediction rate

[} ol 02 03 04 (5] 06 07 08 09 1
Portion of study area

(@)

Prediction rate curve

Prediction rate

0 0.05 0.1 0.15 0.2 0.25 0.3
Portion of study area

®
Fig. 8. (a) Prediction rate curve, (b) enlarged prediction rate
curve within the black rectangle in (a).

account for both sparsely sampled hard spot heights
and satellite-based soft elevation data, more realistic
topographic data with less uncertainty could be
generated and thus the best prediction performance
could be obtained. When considering that ground-
based field surveys are limited by the cost of
sampling and accessibility, soft information from
remote sensing data, which provides exhaustive
information over the area of interest, would be a

useful information source for thematic mapping.

4. Conclusions

GIS-based spatial data integration tasks have used
exhaustive thematic maps generated from sparsely
sampled data or satellite-based data. Due to a
simplification of reality and error in mapping

procedures, such spatial data are usually imperfect

and of different accuracy. As a result, uncertainty
from input spatial data may propagate through spatial
data integration procedures and affect the final
interpretation of integration results. Thus, analysis of
this kind of effect in connection with input data
should be properly done to obtain the best reasonable
interpretation.

In this paper, the effects of different sources of
elevation estimates on spatial prediction of landslide
hazard were investigated. Three different sources of
elevation were considered; 1) ground-based sparsely
sampled spot height data, 2) exhaustive elevation data
derived from ASTER stereo images and 3) an
integrated elevation data set which accounted for
above two different sources of elevation and was
generated via geostatistical kriging. In this case study,
more reliable and less uncertain elevation and slope
values derived from geostatistical integration led to
the best prediction performance for landslide hazard
mapping purposes, compared with landslide hazard
maps based on only spot heights or only ASTER-
based elevation.

To thoroughly investigate the effects of input data
in GIS-based spatial data integration tasks, as well as
the degree in which soft data from space observation
can complement hard data as a function of the
sampling density of the former, a stochastic
simulation framework will be developed in the near

future.
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