• 제목/요약/키워드: Internet Based Learning

검색결과 1,583건 처리시간 0.027초

텍스트마이닝을 활용한 아동, 청소년 대상 소비관련 연구 키워드 분석 (Keyword Analysis of Research on Consumption of Children and Adolescents Using Text Mining)

  • 진현정
    • 한국가정과교육학회지
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구는 텍스트마이닝 기법으로 최근 20년간 아동, 청소년 대상 소비 관련 연구의 주요어를 분석하여 소비 관련 연구의 동향을 파악하고자 하였다. 이를 위하여 KCI 등재/등재후보 학술지에 게재된 아동, 청소년의 소비관련 연구 869편의 주요어를 분석하였다. 빈도분석 결과 가장 빈도가 높은 주요어는 청소년, 청소년소비자, 소비자교육, 과시소비, 소비행동, 캐릭터, 경제교육, 윤리적소비 순으로 나타났다. 5년 단위로 주요어의 빈도를 분석한 결과, 2006년~2010년에는 소비자교육의 빈도가 월등하게 높아 이 시기에 소비자교육에 관한 연구가 많이 이루어졌음을 확인할 수 있었다. 2011년 이후 윤리적소비에 관한 연구가 활발해졌으며, 최근 5년 동안은 두드러지는 주요어가 없는 대신 다양한 주제로 연구가 이루어졌음을 알 수 있었다. TF-IDF 기준으로 주요어를 살펴보면 2001년~2005년 사이에는 환경과 인터넷 관련 단어가 주요 키워드였다. 2006년~2010년에는 미디어이용, 광고 교육, 인터넷아이템, 2011년~2015년에는 공정무역, 녹색성장, 녹색소비, 북한이탈청소년, 소셜미디어, 2016~2020년에는 텍스트마이닝, 지속가능발전교육, 메이커교육, 2015개정교육과정이 중요한 용어로 등장하였다. 토픽모델링 결과, 소비자교육, 대중매체/또래문화, 합리적 소비, 한류/문화산업, 소비자역량, 경제교육, 교수학습방법, 친환경/윤리적소비의 8개의 토픽이 도출되었다. 동시 출현 빈도를 활용한 네트워크 분석을 통해 아동, 청소년 관련 소비 연구에서 과시소비와 소비자교육이 중요한 연구주제임을 알 수 있었다.

국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구 (A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM))

  • 신우택;이진희;김정우;신동선;이영상;황승호
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-178
    • /
    • 2020
  • 국방부는 감소되는 부대 및 병력자원의 문제해결과 전투력 향상을 위해 4차 산업혁명 기술(빅데이터, AI)의 적극적인 도입을 추진하고 있다. 국방 정보시스템은 업무 영역 및 각군의 특수성에 맞춰 다양하게 개발되어 왔으며, 4차 산업혁명 기술을 적극 활용하기 위해서는 현재 폐쇄적으로 운용하고 있는 국방 데이터 관리체계의 개선이 필요하다. 그러나, 국방 빅데이터 및 인공지능 도입을 위해 전 정보시스템에 데이터 표준을 제정하여 활용하는 것은 보안문제, 각군 업무특성 및 대규모 체계의 표준화 어려움 등으로 제한사항이 있고, 현 국방 데이터 공유체계 제도적으로도 각 체계 상호간 연동 소요를 기반으로 체계간 연동합의를 통해 직접 연동을 통하여 데이터를 제한적으로 공유하고 있는 실정이다. 4차 산업혁명 기술을 적용한 스마트 국방을 구현하기 위해서는 국방 데이터를 공유하여 잘 활용할 수 있는 제도마련이 시급하고, 이를 기술적으로 뒷받침하기 위해 국방상호운용성 관리지침 규정에 따라 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 국방 데이터의 체계적인 표준 관리를 지원하는 다중 데이터 저장소 관리(MRMM) 기술개발이 필요하다. 본 연구에서는 스마트 국방 구현을 위해 가장 기본이 되는 국방 데이터의 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고, 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 다중 데이터 저장소 관리 (MRMM) 기술을 제시하고, 단어의 유사도를 통해 MRMM의 실현 방향성을 구현하였다. MRMM을 바탕으로 전군 DB의 표준화 통합을 좀 더 간편하게 하여 실효성 있는 국방 빅데이터 및 인공지능 데이터 구현환경을 제공하여, 스마트 국방 구현을 위한 막대한 국방예산 절감과 전투력 향상을 위한 전력화 소요기간의 감소를 기대할 수 있다.

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템 (A System for Automatic Classification of Traditional Culture Texts)

  • 허윤아;이동엽;김규경;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.39-47
    • /
    • 2017
  • 한국 문화의 역사, 전통과 관련된 디지털 웹 문서가 증가하게 되었다. 하지만 창작자 또는 전통 문화와 관련된 소재를 찾는 사용자들은 정보를 검색해도 결과가 충분하지 않았으며 원하는 정보를 얻지 못하는 경우가 나타나고 있다. 이런 효과적인 정보를 접하기 위해서는 문서 분류가 필요하다. 과거에 문서 분류는 작업자가 수작업으로 문서 분류하여 시간과 비용이 많이 소비하는 어려움이 있었지만, 최근 기계학습 기반으로 한 자동 문서 분류를 통해 효율적인 문서 분류가 이루어진다. 이에 본 논문은 전통문화 콘텐츠를 체계적인 분류체계로 구성한 한민족정보문화마당 데이터를 기반으로 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발한다. 본 연구는 한민족정보문화마당 텍스트 데이터에 대해 단어 빈도수를 추출하기 위해 TF-IDF모델, Bag-of-Words 모델, TF-IDF/Bag-of-Words를 결합한 모델을 적용하여 각각 SVM 분류 알고리즘을 사용하여 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발하여 성능평가를 확인하였다.

멀티미디어 교실을 위한 윈도우 NT 기반 스트림 서버 구현 (Implementation of a Windows NT Based Stream Server for Multimedia School Systems)

  • 손주영
    • 한국멀티미디어학회논문지
    • /
    • 제2권3호
    • /
    • pp.277-288
    • /
    • 1999
  • 개인화된 학습내용과 진도로 멀티미디어를 이용한 교재를 통해 학습 효과를 크게 제고할 수 있는 중등학교 멀티미디어 교실과 대학의 멀티미디어 센터를 위한 분산 스트림 서버 시스템을 구현하였다. 기존의 멀티미디어 정보 재생 시스템은 멀티미디어 교실에 적용하기에 적절하지 못한 제약점을 가지고 있다. 과다한 스트림당 비용이 요구되거나 그렇지 않으면 학습에 활용하기에는 저급한 재생 품질, 원활하지 못하는 시스템 및 서비스 확장성, 개별적 고유 클라이언트 환경에 의한 사용 이절감, 교사 조작 능력과 표현 의도가 전혀 고려되지 않은 일반적 저작 도구로 인한 교재 저작 어려움 그리고 구성 시스템간의 유기적 연동 부재로 인한 관리 어려움 등의 문제점을 극복한 시스댐을 구현하였다. 폐쇄되어 있는 교실에서뿐만 아니라 인터넷을 통한 광범 위한 원격 교육에 확장할 수 있도록 웹 기반 분산 시스댐으로 구성하였다. 전체 시스템의 구성 요소는 멀티미 디어 정보 저장 및 재생을 담당하는 스트림 서버 클라이언트 시스템, 분산되어 있는 서버의 통합 역할을 하는 서비스 게이트웨이, 그리고 클립 및 교재 저작을 위한 저작관리 시스템 등이다. 본 논문에서는 그 가운데 멀티미디어 정보를 저장, 전송하는스트립 서버의 설계 및 구현에 대해 설명한다. 윈도우NT서버에서 실행되는 한 대의 스트림 서버 시스템으로 한 학급의 클라이언트(50-60대)에서 MPEG~ 1 스트렴을 동시에 재생할 수 있는 성능을 아무런 시스템 변경 없이 응용 수준의 소프트웨어 엔진만으로 실현하였다. 그리고 타 구성 요소 시스템간의 유기적 연동을 통한 시스템의 확장성과 서비스의 유연성을 확보할 수 있었다.

  • PDF

모바일 한자 학습 애니메이션 생성 (Animation Generation for Chinese Character Learning on Mobile Devices)

  • 구상옥;장현규;정순기
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권12호
    • /
    • pp.894-906
    • /
    • 2006
  • 모바일 기기의 성능 및 화면, 무선 네트워크의 속도 등의 제약으로 모바일 컨텐츠 개발에는 많은 어려움이 있다. 단순히 유선 웹상에서 기존에 서비스 되던 컨텐츠의 가시적인 축소만으로는 양질의 컨텐츠 제작이 어렵다. 빠르게 변화하는 모바일 컨텐츠 시장에 적응하기 위해서는 컨텐츠 특성에 최적화된 데이타 표현 기법 및 저작 도구의 개발이 이루어져야 한다. 본 논문에서는 모바일 기기 상에서의 한자 학습을 위한 적은 용량의 모바일 컨텐츠 및 저작 도구를 개발하였다. 본 연구에서 개발한 모바일 컨텐츠는 단순히 한자 이미지와 설명 정보를 보여주는 것이 아니라, 한자 획순으로 붓으로 쓰는 것과 같은 애니메이션 효과를 줄 수 있다. 또한 저작 도구는 사용자가 그래픽이나 한자, 모바일 프로그래밍에 관한 전문가가 아니더라도 쉽고 빠르게 컨텐츠를 생성할 수 있는 개발 환경을 제공한다. 본 논문은 트루타입 폰트로부터 글자 모양을 획득하여, 간단한 사용자 입력으로 획 분할 및 획 순서 정보를 얻고, 자동으로 획의 방향을 추출, 각 획마다 붓으로 쓰는 효과의 애니메이션을 생성한다. 다음으로 모바일 기기에서의 효율적인 글자 애니메이션을 위해 애니메이션 데이타를 압축한다. 본 논문은 한자뿐 아니라, 한글 또는 다른 형태의 그래픽에도 이용될 수 있으며, 향후 획 분할 및 획 순서 결정을 자동화하는 방법을 연구하고자 한다.

딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현 (Design and Implementation of Visitor Access Control System using Deep learning Face Recognition)

  • 허석렬;김강민;이완직
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.245-251
    • /
    • 2021
  • 1,2인 가구가 꾸준하게 늘어나고 있는 추세에 비어 있는 시간대에 집을 방문하는 외부인이 누구인지 확인하고 싶은 요구가 증가하고 있다. 얼굴인식 기술은 많은 연구를 통해 여러 가지 모델이 제안되었는데 OpenCV의 Harr Cascade와 Dlib의 Hog가 대표적인 오픈소스 모델이다. 두 모델은 사용 환경에 따른 장단점을 가지고 있는데, 본 연구에서 초점을 둔 실내 현관 앞과 제한된 거리에서는 Dlib의 Hog가 강점을 가진다. 본 논문에서는 딥러닝 오픈 소스인 Dlib에 기반을 둔 얼굴인식 방문자 출입관리 시스템을 설계하고 구현하였다. 전체 시스템은 프론트 모듈과 서버모듈, 모바일모듈로 구성되며 세부적으로는 얼굴등록, 얼굴인식, 실시간 방문자 확인 및 원격제어, 동영상 저장 기능을 포함한다. 인터넷에서 공개된 사진을 이용하여 거리임계 값의 변화에 따른 정밀도, 특이도, 정확도를 구하고 선행연구 결과와 비교하였다. 실험 결과 구현된 시스템이 정상적으로 동작하는 것을 확인 하였으며 Dlib에서 보고한 것과 비슷한 결과를 보이는 것을 확인 하였다.

온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향 (The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations)

  • 서아영;신경식
    • Asia pacific journal of information systems
    • /
    • 제22권2호
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

A Study on the Improvement Scheme of University's Software Education

  • Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.243-250
    • /
    • 2020
  • 본 논문에서는 대학의 효과적인 SW교육 방법을 제안한다. 해외 Top 10 대학과 SW중심대학, 거점 국립대학의 SW교육과정을 비교 분석하고, 그 결과를 기반으로 대학의 효과적인 SW교육 방법을 위해 5가지 개선할 점을 제안한다. 첫째는 교육과정 개발과정에서 SW 개발자의 직무 분석을 기반으로 교과목을 개발함으로써 산업체 현장 적응력을 높이는 것이다. 둘째는 4차 산업혁명 핵심기술(클라우드컴퓨팅, 빅데이터, 가상/증강현실, 사물인터넷 등)의 교과목을 강화하여 의료, 바이오, 센서, 인간, 인지과학 등의 다양한 분야와 융합하는 것이 필요하다. 셋째는 프로그래밍 언어 교육은 기본적인 문법 교육 후, SW융합 교과목에 포함하여 다양한 분야의 프로젝트를 구현해 보도록 해야 한다. 또한, 응용프로그램 개발자보다는 시스템프로그래밍 개발자, Back-End(서버단) 개발자 양성을 위한 교과목을 강화해야 한다. 넷째는 Product 기반의 자기 주도적 학습이 가능한 캡스톤디자인, 종합설계 등의 교과목을 강화하여 산업체 프로젝트에 참여할 기회를 제공한다. 다섯째는 지역 기반의 산업체 현장에서 기술을 습득할 수 있는 인턴십 또는 산학연계 프로그램을 강화함으로써 각 지역산업 기반의 대학 특성화 교육과정 개발이 필요하다.

영상처리기법을 이용한 CNN 기반 리눅스 악성코드 분류 연구 (A Study on Classification of CNN-based Linux Malware using Image Processing Techniques)

  • 김세진;김도연;이후기;이태진
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.634-642
    • /
    • 2020
  • 사물인터넷(IoT) 기기의 확산으로 인해 다양한 아키텍처가 존재하는 Linux 운영체제의 활용이 증가하였다. 이에 따라 Linux 기반의 IoT 기기에 대한 보안 위협이 증가하고 있으며 기존 악성코드를 기반으로 한 변종 악성코드도 꾸준히 등장하고 있다. 본 논문에서는 시각화한 ELF(Executable and Linkable Format) 파일의 바이너리 데이터를 영상처리 기법 중 LBP(Local Binary Pattern)와 Median Filter를 적용하여 CNN(Convolutional Neural Network)모델로 악성코드를 분류하는 시스템을 제안한다. 실험 결과 원본 이미지의 경우 98.77%의 점수로 가장 높은 정확도와 F1-score를 보였으며 재현율도 98.55%의 가장 높은 점수를 보였다. Median Filter의 경우 99.19%로 가장 높은 정밀도와 0.008%의 가장 낮은 위양성률을 확인하였으며 LBP의 경우 전반적으로 원본과 Median Filter보다 낮은 결과를 보였음을 확인하였다. 원본과 영상처리기법별 분류 결과를 다수결로 분류했을 경우 원본과 Median Filter의 결과보다 정확도, 정밀도, F1-score, 위양성률이 전반적으로 좋아졌음을 확인하였다. 향후 악성코드 패밀리 분류에 활용하거나 다른 영상처리기법을 추가하여 다수결 분류의 정확도를 높이는 연구를 진행할 예정이다.