• Title/Summary/Keyword: Internal coordinates

Search Result 59, Processing Time 0.021 seconds

A Study on Measurement and Control of position and pose of Mobile Robot using Ka13nan Filter and using lane detecting filter in monocular Vision (단일 비전에서 칼만 필티와 차선 검출 필터를 이용한 모빌 로봇 주행 위치.자세 계측 제어에 관한 연구)

  • 이용구;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.81-81
    • /
    • 2000
  • We use camera to apply human vision system in measurement. To do that, we need to know about camera parameters. The camera parameters are consisted of internal parameters and external parameters. we can fix scale factor&focal length in internal parameters, we can acquire external parameters. And we want to use these parameters in automatically driven vehicle by using camera. When we observe an camera parameters in respect with that the external parameters are important parameters. We can acquire external parameter as fixing focal length&scale factor. To get lane coordinate in image, we propose a lane detection filter. After searching lanes, we can seek vanishing point. And then y-axis seek y-sxis rotation component(${\beta}$). By using these parameter, we can find x-axis translation component(Xo). Before we make stepping motor rotate to be y-axis rotation component(${\beta}$), '0', we estimate image coordinates of lane at (t+1). Using this point, we apply this system to Kalman filter. And then we calculate to new parameters whick make minimum error.

  • PDF

A novel method of objectively detecting tooth ankylosis using cone-beam computed tomography: A laboratory study

  • Luciano Augusto Cano Martins;Danieli Moura Brasil;Deborah Queiroz Freitas;Matheus L Oliveira
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • Purpose: The aim of this study was to objectively detect simulated tooth ankylosis using a novel method involving cone-beam computed tomography (CBCT). Materials and Methods: Tooth ankylosis was simulated in single-rooted human permanent teeth, and CBCT scans were acquired at different current levels (5, 6.3, and 8 mA) and voxel sizes (0.08, 0.125, and 0.2). In axial reconstructions, a line of interest was perpendicularly placed over the periodontal ligament space of 21 ankylosed and 21 non-ankylosed regions, and the CBCT grey values of all voxels along the line of interest were plotted against their corresponding X-coordinates through a line graph to generate a profile. The image contrast was increased by 30% and 60% and the profile assessment was repeated. The internal area of the resulting parabolas was obtained from all images and compared between ankylosed and non-ankylosed regions under different contrast enhancement conditions, voxel sizes, and mA levels using multi-way analysis of variance with the Tukey post hoc test(α=0.05). Results: The internal area of the parabolas of all non-ankylosed regions was significantly higher than that of the ankylosed regions(P<0.05). Contrast enhancement led to a significantly greater internal area of the parabolas of non-ankylosed regions (P<0.05). Overall, voxel size and mA did not significantly influence the internal area of the parabolas(P>0.05). Conclusion: The proposed novel method revealed a relevant degree of applicability in the detection of simulated tooth ankylosis; increased image contrast led to greater detectability.

Analysis of the Effects of Three Line Scanner's Focal Length Bias (Three Line Scanner의 초점거리 오차의 영향에 관한 연구)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The positions, attitudes, and internal orientation parameters of three line scanners are critical factors in order to acquire the accurate location of objects on the ground. Based on the assumption that positions and attitudes of the sensors are derived either from direct geo-referencing which of using Global Positioning Systems (GPS) and Inertial Navigation Systems (INS), or from indirect geo-referencing which of using Ground Control Points (GCPs), this paper describes on biased effects of Internal Orientation Parameter (IOP) on the ground. The research concentrated on geometrical explanations of effects from different focal length biases on the ground. The Synthetic data was collected by reasonable flight trajectories and attitudes of three line scanners. The result of experiments demonstrated that the focal length bias in case of indirect geo-referencing does not have critical influences on the quality of reconstructed ground space. Also, the relationships between IO parameters and EO parameters were found by the correlation analysis. In fact, the focal length bias in case of the direct geo-referencing caused significant errors on coordinates of reconstructed objects. The RMSE values along the vertical direction and the amount of focal length bias turned out to be almost perfect linear relationship.

Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine (무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능)

  • Ma Fuhua;Choi J.Y.;Yang Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

Kinematic Character istics to Skill Degree during Dance Sports Rumba Forward Walk (댄스스포츠 룸바 Forward Walk 시 숙련도에 따른 운동학적 특성)

  • Seo, Se-Mi;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.293-301
    • /
    • 2010
  • The purpose of this study was to investigate the kinematic difference between skilled and less skilled group for the forward walk at dance sports rumba. Six female players(skilled group: 3, less skilled group: 3) were participated as the subjects. To obtain the three-dimensional location coordinates in the joints and segments, it shot with 100Hz/s using 8 video cameras. Step length, shoulder rotation angle, orientation angle and angular velocity of pelvis were analyzed for each trail. The skilled group showed a bigger movement than the less skilled group at the shoulder rotation angle and ROM. The skilled group showed a bigger movement than the less skilled group at the up/down obliquity and internal/external rotation movement for pelvis. And the skilled group showed a bigger movement than the less skilled group at Maximum angle (down obliquity) of P2 and Maximum angle (up obliquity) of P3 to pelvis ROM. The skilled group showed a faster angular velocity than the less skilled group at P2 (+ direction, posterior) of anterior & posterior tilt, P2 & P3 (- direction, up) of up & down obliquity, and P2 (+ direction, external) of internal & external rotation.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

Study on the Formulation of Two Dimensional Infinite Elements (이차원 무한요소 형성에 관한 연구)

  • 신용태;임장근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1066-1073
    • /
    • 1993
  • Using regular finite elements and infinite elements simultaneously, elastic boundary value problems with infinite domain can be analyzed more effectively and accurately. In this paper, two dimensional infinite elements have been formulated by means of applying the derived mapping function to the coordinates and multiplying the regular displacement shape functions by a decay function. Orders(m, n) of the mapping and decay functions are found for the purpose of obtaining the convergent solutions without respect to the various decay lengthes. As a result of numerical tests for an infinite plate with a hole under internal pressure, two sets of function orders are obtained as follows. (a) n=0, m=1.5 (b) n=m=0.65

Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge (수중방전에 의한 압력분포의 2차원 해석)

  • Kim, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF

A Numerical Study of Radiation Effect from Ducted Fans with Liners (라이너가 있는 덕트의 소음방사 특성에 관한 수치적 연구)

  • 임창우;정철웅;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1010-1015
    • /
    • 2002
  • Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bell-mouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

  • PDF

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.