1 |
Littell, J.D. (2016), Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests, National Aeronautics and Space Administration (NASA), Langley Research Center, Virginia, U.S.A.
|
2 |
SUAVE (2018), Boeing 737 Using AVL; Stanford Aerospace Design Lab, California, U.S.A. https://suave.stanford.edu/tutorials/avl.html.
|
3 |
Ashton, N. and Skaperdas, V. (2019), "Verification and validation of OpenFOAM for high-lift aircraft flows", J. Aircr., 56(4), 1641-1657. https://arc.aiaa.org/doi/abs/10.2514/1.C034918.
DOI
|
4 |
Demoulin, Q., Lefebvre-Albaret, F., Basarab, A., Kouame, D. and Tourneret, J. Y. (2020), "A new flexible photogrammetry instrumentation for estimating wing deformation in airbus", Proceedings of the ETTC2020: European Test and Telemetry Conference, Online, June.
|
5 |
Green, R. (2013), A6-EDY A380 Emirates 31 Jan 2013 JFK; Flicker, Bedford, U.K. https://www.flickr.com/photos/miqspix/4843636798/.
|
6 |
Orlita, M. and Vos, R. (2017), "Cruise performance optimization of the airbus A320 through flap morphing", Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, U.S.A., June.
|
7 |
Sadraey, M. H. (2012), Aircraft Design: A Systems Engineering Approach, John Wiley & Sons, Chichester, U.K.
|
8 |
Wang, Y.M., Yu, S.Y., Ren, S., Cheng, S. and Liu, J.Z. (2020), "Close-range industrial photogrammetry and application: review and outlook", Proceedings of the Optics Ultra Precision Manufacturing and Testing Conference, Beijing, China, November.
|
9 |
Olejnik, A., Kiszkowiak, L., Dziubinski, A. (2018), "Aerodynamic modeling process using reverse engineering and computational fluid dynamics", Proceedings of the Earth and Space 2018: Engineering for Extreme Environments, Virginia, U.S.A., April.
|
10 |
Optical Measuring Techniques (2008), Application Example: Reverse Engineering Aerospace: Digitizing of a full-scale Falcon 20 "Zero-g" jet aircraft; GOM mbH, Braunschweig, Germany. https://www.gom.com/fileadmin/user_upload/industries/falcon_EN.pdf.
|
11 |
Perez-Arribas, F., Castaneda-Sabadell, I. (2016), "Automatic modelling of airfoil data points", Aerosp. Sci. Technol., 55, 449-457. https://doi.org/10.1016/j.ast.2016.06.016.
DOI
|
12 |
Potabatti, N. S. (2019), "Photogrammetry for 3D reconstruction in solidworks and its applications in industry", M.Sc. Thesis, Purdue University Graduate School, Indiana, U.S.A.
|
13 |
Sun, J., Hoekstra, J.M. and Ellerbroek, J. (2020), "Estimating aircraft drag polar using open flight surveillance data and a stochastic total energy model", Transport. Res. C Emer., 114, 391-404. https://doi.org/10.1016/j.trc.2020.01.026.
DOI
|
14 |
Visser, M. (2010), u berflug in Airbus-Werkslackierung; Flicker, California, U.S.A. https://de.wikipedia.org/wiki/Airbus_A380#/media/Datei:Airbus_A380_overfly_crop.jpg.
|
15 |
Werner-Spatz, C., Heinze, W. and Horst, P. (2009), "Improved representation of high-lift devices for a multidisciplinary conceptual aircraft design process", J. Aircr., 46(6), 1984-1994. https://doi.org/10.2514/1.42845.
DOI
|
16 |
Xiong, J., Tang, S. and Guo, J. (2011), "Approach of aircraft configuration with complex free-form surface design based on reverse engineering", Proceedings of the 2011th International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, March.
|
17 |
Aicardi, I., Lingua, A., Mazzara, L., Musci, M.A. and Rizzo, G. (2020), "Ice detection on airplane wings using a photogrammetric point cloud: A simulation", Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 183-189. https://doi.org/10.5194/isprs-archives-xliii-b2-2020-183-2020.
DOI
|
18 |
UIUC Applied Aerodynamics Group (2021b), B737a Airfoil; University of Illinois at Urbana-Champaign, Illinois, U.S.A. https://m-selig.ae.illinois.edu/ads/coord/b737a.dat.
|
19 |
AIAA CFD High Lift Prediction Workshops (2020), 4th AIAA CFD High Lift Prediction Workshop (HLPW-4); AIAA & NASA, USA, https://hiliftpw.larc.nasa.gov/Workshop4/geometries.html.
|
20 |
UIUC Applied Aerodynamics Group (2021a), B29 Root Airfoil; University of Illinois at Urbana-Champaign, Illinois, U.S.A. https://m-selig.ae.illinois.edu/ads/coord/b29root.dat.
|
21 |
Buonamici, F., Carfagni, M., Furferi, R., Governi, L., Lapini, A. and Volpe, Y. (2018), "Reverse engineering modeling methods and tools: a survey", Comput. Aided Design., 15(3), 443-464. https://doi.org/10.1080/16864360.2017.1397894.
DOI
|
22 |
De Grave, E. (2017), "Reverse engineering of passenger jets-classified design parameters", M.Sc. Thesis, Hamburg University of Applied Sciences, Hamburg, Germany.
|
23 |
Drela, M. (2000), XFOIL Subsonic Airfoil Development System; Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. https://web.mit.edu/drela/Public/web/xfoil/.
|
24 |
Huband, J.M. (1997), "Reverse engineering of aircraft wing data using a partial differential equation surface model", Ph.D. Dissertation, Old Dominion University, Virginia, USA.
|
25 |
Gomez, A., Olmos, V., Racero, J., Rios, J., Arista, R. and Mas, F. (2017), "Development based on reverse engineering to manufacture aircraft custom-made parts", Int. J. Mechatron. Manuf. Syst., 10(1), 40-58.
DOI
|
26 |
He, X., Li, J., Mader, C.A., Yildirim, A. and Martins, J.R. (2019), "Robust aerodynamic shape optimization - from a circle to an airfoil", Aerosp. Sci. Technol., 87, 48-61. https://doi.org/10.1016/j.ast.2019.01.051.
DOI
|