• Title/Summary/Keyword: Interleaved Control

Search Result 137, Processing Time 0.033 seconds

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

Performances Comparison of Interleaved Converter for Distributed Power System (분산 전원장치를 위한 중첩형 컨버터의 성능 비교)

  • Moon, Gun-Woo;Yoon, Suk-Ho;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.37-44
    • /
    • 1998
  • This paper compared to the operation performance and efficiency of an interleaved active clap ZVS forward converter and an interleaved ZVS half-bridge converter in distributed power system. The design for the current-mode control circuit of an interleaved active clamp ZVS forward converter is presented. To simplify the gate drive circuits, N-P MOSFETs coupled active clamp method is proposed. An efficiency about 90% for the 50∼100% load range is achieved.

  • PDF

A novel ZVS interleaved totem-pole PFC converter with reduced circulating current and diode reverse recovery current (순환전류와 다이오드 역회복 전류가 작은 인터리빙 방식의 새로운 ZVS 토템폴 PFC 컨버터)

  • ;Choe, U-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.189-191
    • /
    • 2018
  • This paper introduces a novel ZVS interleaved totem-pole PFC with the reduced circulating current and the reverse recovery current of the diodes. With the help of a simple auxiliary inductor, both ZVS turn-on of the main switches and soft turn-off of the body diodes can be achieved. In the proposed totem-pole PFC topology since the switching losses and the reverse recovery losses can be significantly reduced, the typical Si MOSFETs can be employed. In addition the circulating current is reduced by adjusting the switching frequency. The proposed PFC topology can be a low cost solution to achieve high efficiency in high power PFC applications. The validity and the feasibility of the proposed topology is verified by the experimental results with a 3.3kW interleaved totem-pole PFC converter.

  • PDF

Small Signal Analysis and Controller Design for Interleaved DC-DC Dual Boost Converter in Discontinuous Current Mode (불연속전류모드에서 interleaved DC-DC dual boost 컨버터용 소 신호 해석 및 제어기 설계)

  • Park Joo Moon;Park Sang Eun;Kuk Jung Hyun;Hwang Young Seong;Kim Young Roc;Seong Se Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.530-533
    • /
    • 2001
  • Interleaved Dual Boost(IDB) converter can reduce current ripple, switching loss and harmonics without filter in input power line. Moreover, this improve power factor. In this paper, we will use the state average methode and small signal analysis at the Interleaved dual boost converter. 4-type controllers were designed by using control transfer function. The result of these controller simulations is analyzed and proposed a proper controller at IDB

  • PDF

Design and Control of Interleaved Buck Converter in High Power Applications

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • This paper presents design of interleave configured dc-dc converter for high power distributed power system applications. The multi channel interleaving buck converter with small inductance has proved to be suitable for micro-grid, requiring medium output voltages, high output currents and fast transient response. Integrated magnetic components are used to reduce the size of the converter and improve efficiency. Unlike conventional methods, the distributed approach requires no centralized control, automatically accommodates varying numbers of converter cells, and is highly tolerant of subsystem failures. A general methodology for achieving distributed interleaving is proposed, along with a specific implementation approach. The design and simulation verification of switching frequency 10 kHz system is presented with interleaved clocking of the converter cells. The simulation (simulated by PSIM 6.1) results corroborate the analytical predictions and demonstrate the tremendous benefits of the distributed interleaving approach.

  • PDF

Analysis of Interleaved Boost Power Factor Corrector (Interleaved 승압형 역률보상 컨버터의 해석)

  • Heo, Tae-Won;Park, Jee-Ho;Roh, Tae-Kyun;Chung, Jae-Lyoun;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.186-192
    • /
    • 2002
  • In this paper, interleaved boost power factor corrector(IBPFC) is applied as a pre-regulator in switch mode power supply. IBPFC can reduce input current ripple and effectively increase the switching frequency without increasing the switching losses, because input current is divided each 50% by two switching devices. IBPFC can be classified as three cases by duty ratio condition in continuous current mode and be carried out state space average modeling. According to the modeling, steady and transient state analysis is performed by steady elements and perturbation element. Control transfer function is derived for design of control system.

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

A new hybrid control scheme for reduction of secondary diode voltage stresses Based on interleaved PFC Asymmetrical Half Bridge Topology (Asymmetrical 반브리지 컨버터의 이차측 다이오드 전압스트레스저감을 위한 새로운 하이브리드 제어기법)

  • Park, Nam-Ju;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1416-1418
    • /
    • 2005
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter(AHBC) with low voltage stresses of the diodes and interleaved PFC(power factor correction). The proposed new control scheme can observe variation of secondary diodes voltage stresses by variation of duty ratio and then decide the control portions which are asymmetrical control and PFM(Pulse Frequency Modulation). Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, low conduction loss according to the low voltage drop and wide zvs range by load variation. Through simulation results, the validity of the proposed control scheme is demonstrated.

  • PDF

Design and Performance Evaluation of a Media Access Control Algorithm supporting Weighted Fairness among Users in Ethernet PON (Ethernet PON에서 가입자간 가중치 공평성을 보장하는 매체접근 제어 알고리즘의 설계 및 성능 분석)

  • 최은영;이재용;김병철;권영미
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.45-53
    • /
    • 2004
  • This paper proposes and analyzes a new media access control (MAC) scheduling algorithm, “Interleaved Polling with Deficit Round Robin (IPDRR)” that supports weighted fairness among ONUs in Ethernet Passive Optical Network (PON). The purpose of the proposed IPDRR algerian is not only to eliminate the unused bandwidth of upstream ONU traffic, but also to provide weighted fair sharing of upstream bandwidth among ONUs in Ethernet PON systems. Simulation results show that the IPDRR improves the utilization of upstream channel by removing the unused bandwidth and provides weighted fairness among ONUs, although the IPACT scheduling is unfair according to traffic characteristics.

Design and Control Method of ZVT Interleaved Bidirectional LDC for Mild-Hybrid Electric Vehicle

  • Lee, Soon-Ryung;Lee, Jong-Young;Jung, Won-Sang;Won, Il-Kwon;Bae, Joung-Hwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.226-239
    • /
    • 2018
  • In this paper, design and control method ZVT Interleaved Bidirectional LDC(IB-LDC) for mild-hybrid electric vehicle is proposed. The IB-LDC is composed of interleaved buck and boost converters employing an auxiliary inductor and auxiliary capacitors to achieve zero-voltage-transition. Operating principle of IB-LDC according to operation mode is introduced and mathematically analyzed in buck and boost mode. Moreover, PFM and phase control are proposed to reduce circulating current for low power range. Passive components design such as main inductor, auxiliary inductor and capacitors is suggested, considering ZVT condition and maximizing efficiency. Furthermore, a 600W prototype of ZVT IB-LDC for MHEVs is built and tested to verify validity.