• Title/Summary/Keyword: Interlayer film

Search Result 171, Processing Time 0.024 seconds

Bistable Domain Wall Configuration in a Nanoscale Magnetic Disc: A Model for an Inhomogeneous Ferromagnetic Film

  • Venus D.
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.113-117
    • /
    • 2005
  • Some polycrystalline ferromagnetic mms are composed of continuously connected nanometer scale islands with random crystallite orientations. The nanometer perturbations of the mm introduce a large number of nearly degenerate local field configurations that are indistiguishable on a macroscopic scale. As a first step, this situation is modelled as a thin ferromagnetic disc coupled by exchange and dipole interactions to a homogeneous ferromagnetic plane, where the disc and plane have different easy axes. The model is solved to find the partial $N\acute{e}el$ domain walls that minimize the magnetic energy. The two solutions give a bistable configuration that, for appropriate geometries, provides an important microsopic ferromagnetic degree of freedom for the mm. These results are used to interpret recent measurements of exchange biased bilayer films.

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition (전기영동 증착법을 이용한 Black Phosphorus Nano Flake 리튬이온 배터리)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.252-255
    • /
    • 2019
  • Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.

Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se (Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화)

  • Lee, Jong-Chul;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Effects of coating Condition on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Sputtering Method (DC magnetron Sputtering 법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 코팅조건의 영향)

  • 김학동;조성석
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Stainless steel is being used widely lor various purposes due to its good corrosion resistance. There has becn much research to produce colored stainless sterl by several methods. In this experiment, we coated TixN film on the SUS304 substrate with thc DC magnetron sputtering system and studied the internal structurc and adhesive strength of the films as a function of the coating conditions. Before lhe specimen was coated, a sputter etching was very effective in removing the$\delta$ Fe(BCC) phase as well as the contaminant and oxide layer as well as increasing rotghness. Five-stage failure mode appeared with increased scratch load with the TIN films coated on the SUS304 in this manner ; tensile failure-,conformal failure-,buckling failure->chipping failurc and spalling Failure. When the failure was terminated at the initial stage, the film will have good adhesion. But, if syalling failure has occurred at the initial scratch, then the adhesion will be poor. The interlayer between thc coated film and thc substratc was homogeneously adhcsive when the $\gamma'-Fe_4N$ phase wasn't detected in the XRD analysis and the adhesive strength only was reduced by surPace defects. But, when the ,$\gamma'-Fe_4N$N phasc was detected in the XRD analysis, the adhesive strength was very poor.

  • PDF

Corrosion Protection of Plasma-Polymerized Cyclohexane Films Deposited on Copper

  • Park, Z.T.;Lee, J.H.;Choi, Y.S.;Ahn, S.H.;Kim, J.G.;Cho, S.H.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.74-78
    • /
    • 2003
  • The corrosion failure of electronic devices has been a major reliability concern lately. This failure is an ongoing concern because of miniaturization of integrated circuits (IC) and the increased use of polymers in electronic packaging. Recently, plasma-polymerized cyclohexane films were considered as a possible candidate for a interlayer dielectric for multilever metallization of ultra large scale integrated (ULSI) semiconductor devices. In this paper the protective ability of above films as a function of deposition temperature and RF power in an 3.5 wt.% NaCl solution were examined by polarization measurement. The film was characterized by FTIR spectroscopy and contact angle measurement. The protective efficiency of the film increased with increasing deposition temperature and RF power, which induced the higher degree of cross-linking and hydrophobicity of the films.

Characteristics of Hillock Formation in the Al-1%Si Film by the Effect of Ion Implantation and Substrate Temperature (이온 주입과 기판 온도 효과에 의한 Al-1%Si 박막의 Hillock 형성 특성)

  • Choi, Chang-Auk;Lee, Yong-Bong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • As packing density in integrated circuits increases, multilevel metallization process has been widely used. But hillock formed in the bottom layers of aluminum are well known to make interlayer short in multilevel metallization. In this study, the effects of ion implantation to the metal film and deposition temperature on the hillock formation were investigated. The Al-1%Si thin film of $1{\mu}m$ thickness was DC sputtered with substrate ($SiO_2/Si$) temperature of $20^{\circ}C$, $200^{\circ}C$, and $400^{\circ}C$, respectively. Ar ions ($1{\times}10^{15}cm^{-2}$: 150 keV) and B ions ($1{\times}10^{15}cm^{-2}$, 30 keV, 150 keV) were implanted to the Al-Si thin film. The deposited films were evaluated by SEM, surface profiler and resistance measuring system. As a results, Ar implanting to Al-Si film is very effective to reduce hillock size in the metal deposition temperature below than $200^{\circ}C$, and B implanting to an Al-Si film is effective to reduce hillock density in the high temperature deposition conditions around $400^{\circ}C$. Line width less than $3{\mu}m$ was free of hillock after alloying.

Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성)

  • Kim, Ji-Hwan;Cho, Do-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.

Influence of Ag Film Position on the Properties of ZTO/Poly-carbonate Thin Films (Ag 성막위치에 따른 ZTO/폴리카보네이트 필름의 특성 변화)

  • Song, Young-Hwan;Eom, Tae-Young;Cheon, Joo-Yong;Cha, Byung-Chul;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.3
    • /
    • pp.113-116
    • /
    • 2017
  • 100 nm thick Sn doped ZnO (ZTO) single layer, 15 nm thick Ag buffered ZTO (ZTO/Ag), Ag intermediated ZTO (ZTO/Ag/ZTO) and Ag capped ZTO (Ag/ZTO) films were prepared on poly-carbonate (PC) substrates by RF and DC magnetron sputtering and then the influence of the Ag thin film on the optical and electrical properties of ZTO films were investigated. As deposited ZTO thin films show the visible transmittance of 81.8%, while ZTO/Ag/ZTO trilayer films show a higher visible transmittance of 82.5% in this study. From the observed results, it can be concluded that the 15 nm thick Ag interlayer enhances the opto-electrical performance of ZTO thin films effectively for use as flexible transparent conducting oxides films in various opto-electrical applications.

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

Device characterization and Fabrication Issues for Ferroelectric Gate Field Effect Transistor Device

  • Yu, Byoung-Gon;You, In-Kyu;Lee, Won-Jae;Ryu, Sang-Ouk;Kim, Kwi-Dong;Yoon, Sung-Min;Cho, Seong-Mok;Lee, Nam-Yeal;Shin, Woong-Chul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.213-225
    • /
    • 2002
  • Metal-Ferroelectric- Insulator- Silicon (MFIS) structured field effect transistor (FET) device was fabricated and characterized. Important issues to realize ferroelectric gate field effect transistor device were summarized in three sections. The choice of interlayer dielectric was made in the consideration of device functionality and chemical reaction between ferroelectric materials and silicon surface during fabrication process. Also, various ferroelectric thin film materials were taken into account to meet desired memory window and process compatibility. Finally, MFIS structured FET device was fabricated and important characteristics were discussed. For feasible integration of current device as random access memory array cell address schemes were also suggested.