Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.252

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition  

Kim, Juyun (Department of Materials Science and Engineering, Hongik University)
Park, Byoungnam (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 252-255 More about this Journal
Abstract
Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.
Keywords
Black phosphorus; Nano flake; Electrophoretic deposition; Lithium-ion battery; Anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). [DOI: https://doi.org/10.1038/451652a]   DOI
2 V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). [DOI: https://doi.org/10.1039/C1EE01598B]   DOI
3 K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, Science, 311, 977 (2006). [DOI: https://doi.org/10.1126/science.1122152]   DOI
4 P. Poizot and F. Dolhem, Energy Environ. Sci., 4, 2003 (2011). [DOI: https://doi.org/10.1039/C0EE00731E]   DOI
5 N. A. Kaskhedikar and J. Maier, Adv. Mater., 21, 2664 (2009). [DOI: https://doi.org/10.1002/adma.200901079]   DOI
6 L. Q. Sun, M. J. Li, K. Sun, S. H. Yu, R. S. Wang, and H. M. Xie, J. Phys. Chem. C, 116, 14772 (2012). [DOI: https://doi.org/10.1021/jp302265n]   DOI
7 X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, Proc. the National Academy of Sciences of the United States of America, 112, 4523 (2015). [DOI: https://doi.org/10.1073/pnas.1416581112]   DOI
8 J. Sun, H. W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, and Y. Cui, Nat. Nanotechnol., 10, 980 (2015). [DOI: https://doi.org/10.1038/NNANO.2015.194]   DOI
9 J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, and Y. Cui, Nano Lett., 14, 4573 (2014). [DOI: https://doi.org/10.1021/nl501617j]   DOI
10 C. M. Park and H. J. Sohn, Adv. Mater., 19, 2465 (2007). [DOI: https://doi.org/10.1002/adma.200602592]   DOI
11 Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, and P. K. Chu, Adv. Funct. Mater., 25, 6996 (2015). [DOI: https://doi.org/10.1002/adfm.201502902]   DOI
12 J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O'Brien, Chem. Commun., 50, 13338 (2014). [DOI: https://doi.org/10.1039/C4CC05752J]   DOI
13 D. H. Ha, L. M. Moreau, S. Honrao, R. G. Hennig, and R. D. Robinson, J. Phys. Chem. C, 117, 14303 (2013). [DOI: https://doi.org/10.1021/jp402939e]   DOI
14 Y. S. Hu, P. Adelhelm, B. M. Smarsly, S. Hore, M. Antonietti, and J. Maier, Adv. Funct. Mater., 17, 1873 (2007). [DOI: https://doi.org/10.1002/adfm.200601152]   DOI
15 N. Muralidharan, M. Li, R. E. Carter, N. Galioto, and C. L. Pint, ACS Energy Lett., 2, 1797 (2017). [DOI: https://doi.org/10.1021/acsenergylett.7b00478]   DOI