• Title/Summary/Keyword: Interfacial Bonding Strength

Search Result 174, Processing Time 0.029 seconds

Interfacial Reaction of Ag Bump/Cu Land Interface for B2it Flash Memory Card Substrate (B2it 플래시 메모리 카드용 기판의 Ag 범프/Cu 랜드 접합 계면반응)

  • Hong, Won-Sik;Cha, Sang-Suk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • After flash memory card(FMC) was manufactured by $B^2it$ process, interfacial reaction of silver bump with thermal stress was studied. To investigate bonding reliability of Ag bump, thermal shock and thermal stress tests were conducted and then examined on the crack between Cu land and Ag bump interface. Diffusion reaction of Ag bump/Cu land interface was analyzed using SEM, EDS and FIB. The Ag-Cu alloy layer due to the interfacial reaction was formed at the Ag/Cu interface. As the diffusivity of Ag ${\rightarrow}$ Cu is faster than Cu ${\rightarrow}$ Ag, a lot of (Cu, Ag) alloy layers were observed at the Cu layer than Ag. These alloy layers contributed to increase the Cu-Ag bonding strength and its reliability.

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Preparation and Physical Properties of Polypropylene/Cellulose Composites (폴리프로필렌/셀룰로오스 복합재의 제조 및 물성)

  • Jang, Song Yi;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.130-135
    • /
    • 2015
  • Cellulose has attracted much attention as potential reinforcements in green composites. In this study, polypropylene (PP)/cellulose composites were prepared by melt-blending followed by compression molding. To improve interfacial bonding between PP and cellulose, maleic anhydride-grafted polypropylene (MAPP) was used. Mechanical properties of the PP/cellulose composites were investigated by UTM and izod impact tester. Thermal properties of the PP/cellulose composites were investigated by TGA and DSC. SEM images for the fracture surfaces of the composites showed that the MAPP was effective in improving PP/cellulose interfacial bonding. Tensile strength and modulus of the composite were maxima when MAPP content, based on cellulose content, was 3 wt%. With increasing cellulose content, the impact strength of the composites decreased but the tensile strength and modulus increased.

Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion of Electroless-plated Ni on Polyimide (고온다습처리 조건이 무전해 니켈 도금 박막과 폴리이미드 사이의 계면 접착력에 미치는 영향)

  • Min, Kyoung-Jin;Jeong, Myeong-Hyeok;Lee, Kyu-Hwan;Jeong, Yong-Soo;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.675-680
    • /
    • 2009
  • Effects of $85^{\circ}C/85%$ Temperature/Humidity (T/H) treatment conditions on the peel strength of an electroless-plated Ni/polyimide system were investigated from a $180^{\circ}$ peel test. Peel strength between electroless-plated Ni and polyimide monotonically decreased from $37.4{\pm}5.6g/mm$ to $22.0{\pm}2.7g/mm$ for variation of T/H treatment time from 0 to 1000 hrs. The interfacial bonding mechanism between Ni and polyimide appears to be closely related to Ni-O bonding at the Ni/polyimide interface. The decrease in peel strength due to T/H treatment appears to be related to polyimide degradation due to moisture penetration through the interface and the bulk polyimide itself.

Mixed-mode fracture toughness measurement of a composite/metal interface (복합재료/금속 접착 계면의 혼합모드 파괴인성 측정)

  • Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.

SHEAR BOND STRENGTH OF REPAIRED COMPOSITE RESIN RESTORATIONS (수리된 복합레진 수복물의 전단결합강도 연구)

  • Choi, Soo-young;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • This study was peformed to evaluate the interfacial shear bond strength of base (direct and indirect) and repair composites with aging and surface treatment methods. Direct composite resin specimens ($Charisma^{\circledR}$, Heraeus Kulzer, Germany) were aged for 5 min, 1 hour, 24 hours, and 1 week in $37^{\circ}C$ distilled water before surface treatment, and then divided into five groups Group 1, grinding; Group 2, grinding and application of bonding agent, Group 3, grinding, etching with 37% phosphoric acid for 30sec, and application of bonding agent, Group 4, grinding, etching with 37% phosphoric acid for 30sec, silane treatment, and application of bonding agent ; Group 5, grinding, etching with 4% hydrofluoric acid for 30sec. silane treatment, and application of bonding agent. Indirect composite resin specimens ($Artglass^{\circledR}$, Heraeus Kulzer, Germany) were aged for 1 week in $37^{\circ}C$ distilled water and divided into seven groups Group 1 - Group 5, equal to Charisma specimens; Group 6, grinding, etching with 37% phosphoric acid for 60sec, silane treatment, and application of bonding agent; Group7, grinding, etching with 4% hydrofluoric acid for 60 sec, silane treatment, and application of bond-ing agent. The repair material($Charisma^{\circledR}$) was then added on the center of the surface (5 mm in diameter. 5 mm in height). The shear bond strength was tested and the data was analyzed using one-way ANOVA and the Student- Newman-Keuls test. The following conclusions were drawn. 1 The shear bond strength of $Charisma^{\circledR}$ specimens aged for 1 hour was significantly higher in Group 2 and Group 5 than in Group 1 (p<0.05), and that of $Charisma^{\circledR}$ specimens aged for 1 week was signifi-cantly higher in Group 3 and Group 5 than in Group 1 (p<0.05). No significant difference was found in the bond strength of specimens aged for 5 min and 24 hours. 2. In Group 2 of the $Charisma^{\circledR}$ specimens, there was significant difference between the bond strength of 24 hours and that of 1 week (p<0.05). 3. In Group 4 of the $Charisma^{\circledR}$ specimens, the shear bond strength of specimens aged for 24 hours was significantly higher than the others(p<0.05) 4. There was no significant difference between the shear bond strength of the $Artglass^{\circledR}$ specimens, 5. Most of the $Charisma^{\circledR}$ specimens showed cohesive fractures. Artglass^{\circledR}$ specimens that were etched with acid (phosphoric or hydrofluoric) for 30 sec showed more cohesive fractures.

Effect of Atmospheric Plasma Treatments on Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.167-175
    • /
    • 2008
  • Vapor grown carbon fibers (VGCF) were treated with atmospheric plasma enhancing the surface area in order to improve the bonding to the matrix in epoxy composites. The changes in the mechanical properties of VGCF/epoxy nanocompostes, such as tensile modulus and tensile strength were investigated in this study. VGCF with and without atmospheric plasma treatment for surface modification were used in this investigation. The interdependence of these properties on the VGCF contents and interfacial bonding between VGCF/epoxy matrix were discussed. The mechanical properties of atmospheric plasma treated (APT) VGCF/epoxy were compared with raw VGCF/epoxy. The tensile strength of APT VGCF/epoxy nanocomposites showed higher value than that of raw VGCF. The tensile strength was increased with atmospheric plasma treatment, due to better adhesion at VGCF/epoxy interface. The tensile modulus of raw VGCF and APT VGCF/epoxy matrix were of the similar value. The dispersion of the VGCF was investigated by scanning electron microscopy (SEM), SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.