Browse > Article
http://dx.doi.org/10.7234/kscm.2011.24.2.001

Mixed-mode fracture toughness measurement of a composite/metal interface  

Kim, Won-Seock (한국항공우주연구원 위성구조팀)
Jang, Chang-Jae (한국과학기술원 기계공학과 대학원)
Lee, Jung-Ju (한국과학기술원 기계공학과)
Publication Information
Composites Research / v.24, no.2, 2011 , pp. 1-8 More about this Journal
Abstract
Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.
Keywords
adhesive bonding; interface; fracture toughness; mixed-mode;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yokozeki, T., Ogasawawa, T., Aoki, T., "Correction method for evaluation of interfacial fracture toughness of DCB, ENF and MMB specimens with residual thermal stresses," Compos. Sci. Tech., Vol. 68, 2008, pp. 760-767.   DOI   ScienceOn
2 ASTM E 1820-05., Standard test method for measurement of fracture toughness.
3 ASTM D 5045-99., Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials.
4 Kinloch, A.J., Adhesion and Adhesives: science and technology, Chapman and Han, 1987.
5 Kim, W.S., Yoon, I.H., Lee, J.J., lung, H.T., "Evaluation of mechanical interlock effect on adhesion strength of polymer-metal interfaces using micro-patterned surface topography," Int. J. Adhes. Adhes., Vol. 30, 2010, pp. 408-417.   DOI   ScienceOn
6 Davidson, B.D., Sundararaman, V., "A single leg bending test for interfacial fracture toughness determination," Int. J. Fract., Vol. 78, 1996, pp. 193-210.   DOI   ScienceOn
7 김원석, 이정주, "복합재료/금속 접착 계면의 파괴인성치 측정" 한국복합재료학회지, 제21권, 제4호, 2008, pp. 7-14.
8 정성균, "무게가 상이한 탄소부직포가 삽입된 CFRP 적층판의 층간파괴인성,'' 한국복합재료 학회지, 제22권, 제2호, 2009, pp. 43-48.
9 DIN EN 6034 - 1995, Aerospace series - Carbon fibre reinforced plastics - Test method - Determination of interlaminar fracture toughness energy Mode II - GIIC.
10 ASTM D 6671 - 2004, Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites.
11 Davidson, B.D., Gharibian, S.J., Yu, L., "Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites," Int. J. Fract., Vol. 105, 2000, pp. 343-365.   DOI   ScienceOn
12 Irwin, G.R, Kies, J.A., "Critical energy release rate analysis of fracture strength," Welding J., Vol. 33, 1954, Research Supplement, pp. 193-198.
13 Arcan, M., Hashin, Z., Voloshin, A., "A methods to produce uniform plane stress state with applications to fiber-reinforced materials," Exp. Mech., Vol. 18, 1978, pp. 141-146.   DOI   ScienceOn
14 Jiao, J. Gurumurthy, C.K., Kramer, E.J., Sha, Y., Hui, C.Y., Borgensen, P., "Measurement of interfacial fracture toughness under combined mechanical and thermal stresses," J. Electron. Pack., Vol. 120, 1998, pp. 349-353.   DOI   ScienceOn
15 Nairn, J.A., "On the calculation of energy release rate for cracked laminates with residual stresses," Int. J. Fract., Vol. 139, 2006, pp. 267-293.   DOI   ScienceOn
16 JIS K 7086 - 1993, Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics.
17 Richard, H.A., "A new compact shear specimen," Int. J. Fract., Vol. 17, 1981, pp. R105-107.
18 Richard, H.A., Benitz, K., "A loading device for the creation of mixed mode in fracture mechanics," Int. J. Fract., Vol. 22, 1983, pp. R55-58.   DOI   ScienceOn
19 Wang, J.S., Suo, Z., "Experimental determination of interfacial toughness curves using Brazil Nut sandwiches," Acta metal. Mater., Vol. 38, 1990, pp. 1279-1290.   DOI   ScienceOn
20 Albrecht, P. and Sahli, A.H., "Static strength of bolted and adhesively bonded joints for steel structures," Adhesively bonded joints: testing, analysis and design, ASTM STP 981, W.S. Johnson, Ed., Philadelphia, 1988, pp. 229-251.
21 Noor, A.K., Structures technology for future aerospace systems, AIAA, Virginia, 2000, pp, 58-65.
22 ASTM D 3433 - 1999, Standard test method for fracture strength in cleavage of adhesives in bonded metal joints.
23 ASTM D 5528 - 2001, Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites.
24 Brockmann, W., Geiss, P.L., Klingen, J., Schroder, B., Adhesive bonding: Materials, Applications and Technology, WILEY-VCH, 2009, pp. 205-236.
25 ISO 15024 - 2001, Fibre-reinforced plastic composites - determination of mode I interlaminar fracture toughness, Gk, for unidirectionally reinforced materials.
26 Higgins, A., "Adhesive bonding of aircraft structures," Int. J. Adhes. Adhes., Vol. 20, No. 5, 2000, pp. 367-376.   DOI   ScienceOn
27 Davis, J.R, Aluminum and Aluminum Alloys (ASM Specialty Handbook), ASM International, 1993, pp. 438-450.