Browse > Article
http://dx.doi.org/10.1163/156855108X314797

Effect of Atmospheric Plasma Treatments on Mechanical Properties of VGCF/Epoxy  

Khuyen, Nguyen Quang (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM))
Kim, Jin-Bong (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM))
Kim, Byung-Sun (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM))
Lee, Soo (Department of Chemical Engineering, Changwon National University)
Publication Information
Advanced Composite Materials / v.17, no.2, 2008 , pp. 167-175 More about this Journal
Abstract
Vapor grown carbon fibers (VGCF) were treated with atmospheric plasma enhancing the surface area in order to improve the bonding to the matrix in epoxy composites. The changes in the mechanical properties of VGCF/epoxy nanocompostes, such as tensile modulus and tensile strength were investigated in this study. VGCF with and without atmospheric plasma treatment for surface modification were used in this investigation. The interdependence of these properties on the VGCF contents and interfacial bonding between VGCF/epoxy matrix were discussed. The mechanical properties of atmospheric plasma treated (APT) VGCF/epoxy were compared with raw VGCF/epoxy. The tensile strength of APT VGCF/epoxy nanocomposites showed higher value than that of raw VGCF. The tensile strength was increased with atmospheric plasma treatment, due to better adhesion at VGCF/epoxy interface. The tensile modulus of raw VGCF and APT VGCF/epoxy matrix were of the similar value. The dispersion of the VGCF was investigated by scanning electron microscopy (SEM), SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.
Keywords
VGCF; atmospheric plasma treatments; ultrasonic method; mechanical properties;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 H. Miyagawa and L. T. Drzal, Composite 36, 1440 (2005)   DOI   ScienceOn
2 Showa Denko, Tokyo, Japan, Typical Properties of VGCF. www.sdkc.com
3 Kukdo, Seoul, Korea, Catalog Epoxy Resin and Hardener. www.kukdo.com
4 F. W. J. Van Hattum and C. A. Bernardo, Polym. Compos. 20, 683 (1999)   DOI
5 A. Fukunaga, T. Komami, S. Ueda and M. Nagumo, Carbon 37, 1087 (1999)   DOI   ScienceOn
6 V. Bruse, M. Heintze, W. Brandl, G. Marginean and H. Bubert, Diamond and Related Materials 13, 1177 (2004)   DOI   ScienceOn
7 K. Lozano and V. Diaz, J. Rheofuture 19, 902 (2002)
8 R. Suchentrunk, H. J. Fuesser, G. Staudigl, D. Jonke and M. Meyer, Surf. Coatings Technol. 112, 351 (1999)   DOI   ScienceOn
9 A. Chatterjee and B. L. Deopura, Composites 37, 813 (2005)
10 J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon and K. L. DeVries, Composites, Part B 30, 330 (2006)
11 Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen and H. Bindslev, Intl J. Adhes. Adhes. 27, 402 (2006)
12 H.Miyagawa, M. J. Rich and L. T. Drzal, Thermo Chimica Acta 442, 67 (2006)   DOI
13 D. Pappas, A. Bujanda, J. D. Demaree, J. K. Hirvonen, W. Kosok, R. Jensen and S. McKnight, Surf. Coatings Technol. 201, 4384 (2006)   DOI   ScienceOn
14 S. Trigwell, A. C. Schuerger, C. R. Buhler and C. I. Calle, Lun. Planet. Sci. 37, 2257 (2006)
15 J.-C. Lin, L. C. Chang, M. H. Nien and H. L. Ho, Compos. Struct. 74, 30 (2006)   DOI   ScienceOn
16 J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldy and S. Kumar, Composites, Part B 35, 173 (2004)