• Title/Summary/Keyword: Interface crack

Search Result 516, Processing Time 0.029 seconds

Experimental study on rock-concrete joints under cyclically diametrical compression

  • Chang, Xu;Guo, Tengfei;Lu, Jianyou;Wang, Hui
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • This paper presents experimental results of rock-concrete bi-material discs under cyclically diametrical compression. It was found that both specimens under cyclical and static loading failed in three typical modes: shear crack, tensile crack and a combined mode of shear and wing crack. The failure modes transited gradually from the shear crack to the tensile one by increasing the interface angle between the interface and the loading direction. The cycle number and peak load increased by increasing the interface angle. The number of cycles and peak load increased with the interface groove depth and groove width, however, decreased with increase in interface groove spacing. The concrete strength can contribute more to the cycle number and peak load for specimens with a higher interface angle. Compared with the discs under static loading, the cyclically loaded discs had a lower peak load but a larger deformation. Finally, the effects of interface angle, interface asperity and concrete strength on the fatigue strength were also discussed.

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • Cho, Chong-Du;Kwahk, Si-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF

Determination of Stress Intensity Factors for Interface Cracks in Dissimilar Materials Using the RWCIM (상반일 등고선 적분법을 이용한 이종재 접합계면 균열의 응력강도계수 결정)

  • 조상봉;정휘원;김진광
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.180-185
    • /
    • 2000
  • An interface V-notched crack problem can be formulated as a eigenvalue problem. there are the eigenvalues which give stress singularities at the V-notched crack tip. The RWCIM is a method of calculating the eigenvector coefficients associated with eigenvalues for a V-notched crack problem. Obtaining the stress intensity factors for an interface crack in dissimilar materials is examined by the RWCIM. The results of stress intensity factors for an interface crack are compared with those of the displacement extrapolation method by the BEM

  • PDF

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow (경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정)

  • Lee, Kang-Yong;Baik, Woon-Cheon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.

Analysis of Stress Intensity Factors for an Interface Crack in Anisotropic Dissimilar Materials by Boundary Element Method (경계요소법에 의한 이방성 이종재 접합계면 균열의 응력확대계수 해석)

  • 조상봉;권재도;김태규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.359-370
    • /
    • 1993
  • Up to now, most studies are on interface crack problems in isotropic-isotropic dissimilar materials, but it seems to be not so much on anisotropic dissimlar materials. In this study, the stress intensity factors for an interface crack in anisotropic dissimilar materials are analysed using author's proposed extrapolation method by BEM and we have done a parametric study about material properties or shapes of crack affecting to the stress intensity factors. However, as there are not other's comparable numerical results on these anisotropic dissimilar materials to the best of author's knowledge, the reliability of the present results was proved by following two methods. The first is considering the asymptotic characteristic about stress intensity factors for an interface crack in anisotropic materials when the ansiotropic material approachs to the isotropic material. The second is considering the discontinuity of stress intensity factors between of a crack in an identical homogeneous anisotropic material and an interface crack in anisotropic dissimilar materials.

APPLICATION OF INTEGRODIFFERENTIAL EQUATIONS FOR THE PROBLEM OF ELECTRICALLY PERMEABLE CRACK ON A PIEZOELECTRIC-CONDUCTOR INTERFACE

  • Bakirov, Vadim;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.121-126
    • /
    • 2008
  • A plane strain problem of a crack on interface between an isotropic elastic conductor and a transversely isotropic piezoelectric ceramics is considered. The problem is reduced to system integrodifferential equations on the interface. These equations relate the normal and tangential components of the crack opening vector with distribution of normal and shear stresses on the crack surfaces. It therefore make it possible to obtain an exact solution as a function of the loading applied to the crack surfaces. As an example, some analytical solutions of the crack problem are given.

  • PDF

Finite Element Model to Simulate Crack Propagation Using Interface Elements and Its Verification in Tensile Test

  • Chu, Shi;Yu, Luo;Zhen, Chen
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Since the crack generation and its propagation caused by welding defects is one of the main hull damage patterns, the simulation of crack propagation process has an important significance for ship safety. Based on interface element method, a finite element model to simulate crack propagation is studied in the paper. A Lennard-Jones type potential function is employed to define potential energy of the interface element. Tensile tests of steel flat plates with initial central crack are carried out. Surface energy density and spring critical stress that are suitable for the simulation of crack propagation are determined by comparing numerical calculation and tests results. Based on a large number of simulation results, the curve of simulation correction parameter plotted against the crack length is calculated.

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear (면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구)

  • Shin, Jeong-Woo;Lee, Young-Shin;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF