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Abstract 
A plane strain problem of a crack on interface between an isotropic elastic conductor and a transversely isotropic 

piezoelectric ceramics is considered. The problem is reduced to system integrodifferential equations on the interface. 

These equations relate the normal and tangential components of the crack opening vector with distribution of normal 

and shear stresses on the crack surfaces. It therefore make it possible to obtain an exact solution as a function of the 

loading applied to the crack surfaces. As an example, some analytical solutions of the crack problem are given. 

INTRODUCTION 

    Since many electromechanical devices and instruments contain adhesion joints of piezoelectric materials, an 

investigation of the fracture of these joints, that induced by the interface crack propagation is of great practical 

importance. In particular, studying the joints of transversely isotropic piezoelectric ceramics (e.g., PZT-H5, PZT-4) 

with metals (e.g., steel, copper) is of special interest. The plane problem of a crack on an interface between a linear 

transversely isotropic piezoelectric and an isotropic elastic conductor was first considered in [1]. The axial symmetry 

axis of the transversely isotropic piezoelectric is normal to the interface and a normal homogeneous tensile loading is 

applied at infinity. In this case, electric boundary conditions specified on the crack surfaces assumed the continuity of 

the electric potential and the normal component of the electric displacement vector (model of an electrically 

permeable crack). It follows from the solution of the problem that the asymptotic behavior of the stresses in the 

vicinity of the crack tip is characterized by 
1 / 2 iβ− +

r ,  where  is the distance measured from the crack tip, β 

is a real number depending on the piezoelectric material constants and the conductor elastic modula, and i is the 

imaginary unit. As referred in [2], a general system of singular integral equations for the problem of a crack on an 

interface between an isotropic elastic conductor and a transversely isotropic piezoelectric was given. The solution of 

this system depends on the electric boundary conditions on the crack surfaces. In particular, in the case of electrically 

permeable boundary conditions, the problem is reduced to integrodifferential equations with Cauchy-type kernels. In 

r



the present work, typical examples using these integrodifferential equations to the problem of interface crack in the 

cases of simple loading conditions are shown. 

FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 

   We consider an infinite half-space  of a transversely isotropic piezoelectric material in contact with an elastic 
isotropic conducting material occupying the half-space 

0z >
0z < . The material constants of the piezoelectric material are 

 (the elasticity moduli),  (the piezoelectric moduli), and 11 12 13 33 44,  ,  ,  ,  c c c c c 31 33 15,  ,  e e e 11 33,  ε ε  (the 

dielectric permittivities). Young’s modulus and Poisson’s ratio of the conductor are given by E  and ν , respectively. 
The contact plane  is the plane of isotropy for piezoelectric material. We assume that there is a crack of length 

 on the interface between the materials in the region 
0z =

2L ,  ,  0L x L y z − ≤ ≤ − ∞ < < ∞ = . The case of plane 
strain problem has been considered. Let the composite body (piezoelectric-conductor) with an interface crack be 
subjected to external static mechanical and electric loadings applied outside the crack. The electroelastic state of the 
body (i.e., displacements, the electric field potential, the stresses, and the electric displacement vector components) can 
be represented by the superposition of the following states. State A is that of a body subjected to the same loadings in 
the absence of a crack. In this case, the following conditions on the interface can be specified: the conditions of 
mechanical contact, i.e., the continuity of the normal and tangential displacement and stresses, and the conditions of 
electric contact (i.e., the continuity of the electric field potential and the normal component of the electric displacement 
vector (in the absence of free electric charges on the interface)). State B is that of a body with a crack in the absence of 
loadings applied outside the crack. In this case, on the interface, the conditions of mechanical and electric contact are 
specified. On the crack surfaces, the stresses and normal component of the electric displacement vector are specified to 
ensure the satisfaction of the required mechanical and electric boundary conditions on the crack surfaces in the initial 
state. The analysis of state A is reduced to the solving the electroelasticity problem for a composite continuum. In this 
problem, the stresses and the electric displacement vector components are bounded, whereas in the vicinity of the crack 
tip they grow without limit. Accordingly, it is sufficient to consider state B for the crack problem. We assume that the 
loadings are applied only to the crack surfaces. We also will consider the model of an electrically permeable crack on a 
piezoelectric-conductor interface. This model of crack is specified by the following electric boundary conditions on the 
crack surfaces 

             ,        Dzψ ψ+ − += = Σ                                                         (1) 

where is the normal component of the electric displacement vector in piezoelectric medium,  is the charge 

surface density inducted in the conducting medium on the interface. The superscript + indicates the variables 
corresponding to the upper half-space ( ) and superscript 

Dz
+ Σ

0z ≥ −  indicates the variables corresponding to the lower 

half-space ( ). Then, for the derivatives of normal  and shear  crack opening vector components, 

we have such formulations as [2] 

0z ≤ ( )zu x ( )xu x
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where ( )xzzσ and ( )xxzσ  are normal and shear stresses on the crack surfaces, and 12 1 ,  ,   ,  ,  g γ γ α β  are real 

parameters, which depend on material constants of piezoelectric medium and conducting medium. For example, the 

values for the PZT-H5/steel joint are .  9 2
12 13.195 10   N/m ,  1.010 ,  11.26,   1.195,   0.028g γ γ α β= × = = = =



   The stress distribution ahead of the crack  in the case of an arbitrary distribution of the normal 

stresses 

( ,  x L z> = 0)

( )xzzσ  and shear stresses ( )xxzσ on the crack surfaces has the form [2] 

2 2

1 12 2

cosh( )
( ) ( ) ( ( ) ( )) 

 

ii Lx L L L
x i x ixz zz xz zzx L x LLx L

ββ
πβ ξ ξ

dσ γ σ σ ξ γ σ ξ ξ
ξ ξπ

−−
− − +

+ = +∫
+ − −−−

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

      (3) 

   We note, that the equations (2) and (3) are very similar to the corresponding equations for a crack on the interface 

between two elastic materials [3,4].  

   For a crack of length 2L , the expression for the stress intensity factors (SIFs) has the form [2] 
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   In accordance with [5], the electroelastic energy release rate during the crack propagation is expressed by 

[
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where ψ ψ ψ+ −= −  is the jump of the potential function of the electric field intensity on the crack surfaces.  

Using formula (1)-(4), the following equation is obtained from (5)   
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EXAMPLES OF ANALYTICAL SOLUTIONS OF THE CRACK PROBLEM 

  Typical examples using the equations are considered for simple loading conditions.   

Example 1. 
  Let lumped forces separating the crack surfaces be applied at the crack center 

      ( ) ( ),   ( ) 0,       x P x x x Lzz xzσ δ σ= − = ≤                                               (7) 

where ( )xδ  Dirac's delta function. These loading can be used for the experimental determination of the crack 

resistance of the adhesion joint [6]. We will construct the solution and determine energy release rate G during the crack 

tip propagation. Substituting (7) into (2), and integrating (2) over interval on the interval from L to x (0 )x L< <  we 

obtain the normal and shear crack opening vector components  
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Integral in left side of (8) can be expressed in terms of Appell hypergeometric function.  

  Substituting (7) into (3) and (4) we obtain the stress distribution ahead of the crack and SIFs 
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   Substituting (10) into (6) we find the electroelastic energy release rate  
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For example, for the PZT-H5/steel joint we find ( )12 2 22.25 10   m /N  / G P−= × L . 

Example 2. 
  Assume that uniformly distributed normal stresses 0σ  are imposed on the far boundary, while constant normal and 

shear adhesive stresses between the edges of the crack surfaces σ∗  and τ∗ act in the end regions of length d 

adjacent to the crack tips ( ,   L d x L z 0)− ≤ ≤ = . These adhesive stresses correspond to the plastic flow of the 

adhesive in a thin intermediate layer and satisfy a certain plasticity criterion ( , ) 0f σ τ =∗ ∗ , where f  is a 

monotonically increasing function of the absolute values of σ∗  and τ∗ which depends on the adhesive properties. 

As mentioned before, it is sufficient to consider state B for the crack problem. Then, we shall consider the problem of a 

crack of length 2L  with the following normal and shear stresses on the crack surfaces 
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Substituting (12) into (2)-(4), the crack opening vector components, the stress distribution ahead of the crack and SIFs, 

analogously to what was done in [7] for the crack on the interface between two elastic materials, can be determined. The 

analytical results for the crack opening vector components, the stress distribution ahead of the crack and SIFs may be 

expressed in terms of hypergeometric 2 1F  function. Here, we will only consider energetic characteristics of the crack: 

energy release rate and adhesion fracture energy in the limit equilibrium state. We assume that the size of the end region 

is small compared with the length of the crack. Substituting (12) into (4), we have the leading term of the asymptotic 

expansion when  / 1d L <<
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where 0  , 0K KΙ ΙΙ  are SIFs due to the action of the external load 0σ , ,  K KΙ∗ ΙΙ∗  are  SIFs due to the adhesive 

stresses acting in the end region of the crack. 

   We will now consider the limit equilibrium state of crack, which is characterized by the action of the adhesive forces 

in the end region of the crack and for which there is no energy flux through the points x L= ±  accompanying the 

crack growth. The case in which total SIFs ,  K KΙ ΙΙ are equal to zero corresponds to this example. Equating 

expression (13) to zero, we obtain a relation which connects the external load, the adhesive stresses, length of crack and 

the size of the end region of the crack in the limit equilibrium state. 

      
2

1 * * 0
1

2
(1 4 ) 

2 2 cosh( ) /

id
L

i
d L

βγπ βγ σ τ σ
πβ

⎛ ⎞
⎜ ⎟
⎝ ⎠

+
+ =                                             (14) 

If, in accordance with expression (14), * *,  σ τ  is substituted into the plastic flow criterion ( , ) 0f σ τ =∗ ∗ , it is 

possible to construct the function d from 0 */ Yσ σ  (the value of *Yσ , which is determined from the plastic flow 

criterion , is the yield point of the adhesive) and to compare it with the experimental curve, which can 

be constructed using measurements of the size of plastic zone d and the limit load 

( , 0)Yf σ∗ = 0

0σ  as was done in [8] in the case of 

cracks in homogeneous materials.  

  The equality  

                                                                                    (15) 0G G∗=

holds in the limit equilibrium state, where   
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is the electroelastic energy release rate due to the action of the external load 0σ and 
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is the critical value of the rate of energy absorption at the crack tip (the adhesion fracture energy). 

     The condition of limit stretching in the edge of the end region 

       ( ) ( )u L d iu L dz x δ− − − =                                                             (18) 



where δ  is a constant which characterizes the material of the adhesive layer, is one of the conditions used to estimate 

the size of the end region d. Substituting (12) and (14) into (2), we have the leading term of the asymptotic expansion 

when  for the components of the vector for the crack opening at the edge of the end region /d L << 1 x L d= −  
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Then taking into account, that for real piezoceramic-metal joints 1 10,   β γ ≈≈ , we obtain from (17)-(19) the 

relation 

     2 2 * *  G σ τ≈ +∗ δ                                                                   (20) 

which associates the magnitude of the rate of energy absorption (the adhesion fracture energy) with the stresses acting 

in the end regions and with the limit stretching. 

CONCLUSIONS 

   In the present work, the integrodifferential equations for the plane strain problem of an electrically permeable crack 

on interface between an isotropic elastic conductor and a transversely isotropic piezoelectric ceramics were considered. 

These equations allow us to obtain an exact solution of the crack problem as a function of the loading applied to the 

crack surfaces. Examples of analytical solutions of the crack problem for simple loading conditions were given. In 

particular, such solutions can be used for calculation of the energy release rate and prediction of the adhesion fracture 

energy of the piezoceramic/metal joints.    
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