• Title/Summary/Keyword: Interface circuit

Search Result 603, Processing Time 0.034 seconds

1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks

  • Lee, Sung-Sik;Lee, Ah-Ra;Je, Chang-Han;Lee, Myung-Lae;Hwang, Gunn;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.644-652
    • /
    • 2008
  • In this paper, a low-power CMOS interface circuit is designed and demonstrated for capacitive sensor applications, which is implemented using a standard 0.35-${\mu}m$ CMOS logic technology. To achieve low-power performance, the low-voltage capacitance-to-pulse-width converter based on a self-reset operation at a supply voltage of 1.5 V is designed and incorporated into a new interface circuit. Moreover, the external pulse signal for the reset operation is made unnecessary by the employment of the self-reset operation. At a low supply voltage of 1.5 V, the new circuit requires a total power consumption of 0.47 mW with ultra-low power dissipation of 157 ${\mu}W$ of the interface-circuit core. These results demonstrate that the new interface circuit with self-reset operation successfully reduces power consumption. In addition, a prototype wireless sensor-module with the proposed circuit is successfully implemented for practical applications. Consequently, the new CMOS interface circuit can be used for the sensor applications in ubiquitous sensor networks, where low-power performance is essential.

  • PDF

Experimental Study of Interface Circuit Implementation in Hybrid System (Hybrid System을 위한 Interface 회로구성의 실험적 연구)

  • Myoung Sam Ko
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.41-47
    • /
    • 1977
  • The paper deals with the fundamental specification for the physical implementation of interface circuit, which will play an important role in information and signal trammission between computer and controlled system, and also we have proved that the digital contoller will be able to improve the data handling of interface circuit.

  • PDF

The Study about the New Method of Interface Circuit Design for Variable Resistive Sensors (가변형 저항 센서를 위한 새로운 방식의 인터페이스 회로 설계에 관한 연구)

  • 김동용;박지만;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.749-752
    • /
    • 1999
  • A new interface circuit for variable resistive sensors is proposed. The interface circuit compose of only two strain gages, a voltage-to-current converter, and current mirror with two outputs. A new dual slope A/D converter based on linear operational transconductance amplifier for the testing of prototype interface circuit is also described. The theory of operation is presented and experimental results are used to verify the theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF

A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting (전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구)

  • Chang, Jong-Hyeon;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

Low-Voltage Current-Sensing CMOS Interface Circuit for Piezo-Resistive Pressure Sensor

  • Thanachayanont, Apinunt;Sangtong, Suttisak
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • A new low-voltage CMOS interface circuit with digital output for piezo-resistive transducer is proposed. An input current sensing configuration is used to detect change in piezo-resistance due to applied pressure and to allow low-voltage circuit operation. A simple 1-bit first-order delta-sigma modulator is used to produce an output digital bitstream. The proposed interface circuit is realized in a 0.35 ${\mu}m$ CMOS technology and draws less than 200 ${\mu}A$ from a single 1.5 V power supply voltage. Simulation results show that the circuit can achieve an equivalent output resolution of 9.67 bits with less than 0.23% non-linearity error.

  • PDF

Digitized Pressure Sensor (디지탈 출력 압력 센서)

  • Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.419-421
    • /
    • 1996
  • We propose the digitized pressure sensor and the interface circuit to read directly the pressure signal in the digital form. The interface circuit has the control clock, comparator, and bit value decision circuit. The digitized sensor and interface circuit are integrated on the one chip using the post processing after IC fabrication. The dimension of the fabricated digitized pressure sensor is $3{\times}6{\times}1mm^3$.

  • PDF

FPGA Design of LCD Drive Circuit using USB Interface (USB 인터페이스를 이용한 LCD 구동회로의 FPGA 설계)

  • Lee, Seung-Ho;Lee, Ju-Hyeon
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.53-60
    • /
    • 2002
  • This paper describes a Gray Mode Graphic STN LCD drive circuit using USB interface. The drive circuit using USB interface can highly transfer image data created under PC t LCD. Hence, the LCD drive circuit doesn't use microprocessor for the convenience of users. The proposed LCD drive circuit part have been verified by simulation and by ALTERA EPF10K10TC144-3 FPGA implementation in VHDL. The USB interface part have been programmed in MS-Visual C++ 6.0. The validity and efficiency of the proposed LCD drive circuit have been verified by test board. After comparing this LCD drive circuit to specify it was verified that the developed LCD drive circuit showed good performances, such as convenience of users, low cost.

Miniaturized Sensor Interface Circuit for Respiration Detection System (호흡 검출 시스템을 위한 초소형 센서 인터페이스 회로)

  • Jo, Sung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1130-1133
    • /
    • 2021
  • In this paper, a miniaturized sensor interface circuit for the respiration detection system is proposed. Respiratory diagnosis is one of the main ways to predict various diseases. The proposed system consists of respiration detection sensor, temperature sensor, and interface circuits. Electrochemical type gas sensor using solid electrolytes is adopted for respiration detection. Proposed system performs sensing, amplification, analog-to-digital conversion, digital signal processing, and i2c communication. And also proposed system has a small form factor and low-cost characteristics through optimization and miniaturization of the circuit structure. Moreover, technique for sensor degradation compensation is introduced to obtain high accuracy. The size of proposed system is about 1.36 cm2.

Design of SECE Energy Harvest Interface Circuit with High Voltage Comparator for Smart Sensor (고전압 비교기를 적용한 스마트 센서용 SECE 에너지 하베스트 인터페이스 회로 설계)

  • Seok, In-Cheol;Lee, Kyoung-Ho;Han, Seok-Bung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.529-536
    • /
    • 2019
  • In order to apply a piezoelectric energy harvester to a smart sensor system, an energy harvest interface circuit including an AC-DC rectifier is required. In this paper, we compared the performance of full bridge rectifier, which is a typical energy harvester interface circuit, and synchronous piezoelectric energy harvest interface circuit by using board-level simulation. As a result, the output power of a synchronous electric charge extraction(: SECE) circuit is about four times larger than that of the full bridge rectifier, and there is little load variation. And a high voltage comparator, which is essential for the SECE circuit for the piezoelectric energy harvester with an output voltage of 40V or more, was designed using 0.35 um BCD process. The SECE circuit using the designed high-voltage comparator proved that the output power is 427 % higher than the FBR circuit.

Research for the interface circuit to reduce static current and rising time (접속 속도 향상 및 전력소모를 줄인 위성용 접속회로 연구)

  • Won, Joo-Ho;Ko, Hyoung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.114-118
    • /
    • 2016
  • In this paper, we present the advanced open collector circuit, interface circuit between aerospace electronics. Satellite is composed of a number of electronics, which were provided from various manufacturers. Each company manufactured its own electronics for satellite using its heritage and requirements for their electronics. Therefore each electronics may use different internal supplies. It make a problem between electronics because the supply is different from other electronics, such as the increasing of power dissipation because of the static current and the mismatch of interface voltage, the offset. Proposed circuit can reduce the static current and rising time, and also decrease the useless power dissipation caused by the static current for open collector circuit