• Title/Summary/Keyword: Interface Layer

Search Result 2,222, Processing Time 0.029 seconds

Implementation of FOUNDATION Fieldbus Interface Board (FOUNDATION 필드버스 인터페이스 보드 구현)

  • 최인호;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.93-93
    • /
    • 2000
  • In this study, physical and data link layer protocols of FOUNDATION Fieldbus are implemented. INTEL386EX and 80196KC are used fer the CPU of PC interface board and sensor interface module, respectively The physical layer protocol of FOUNDATION Fieldbus is developed by using FB3050 chip, the fieldbus communication controller ASIC. The data Link layer protocol of FOUNDATION Fieldbus is implemented by software.

  • PDF

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon;Kim, Sehun;Kim, Jeong Won
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.351-356
    • /
    • 2014
  • The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Relaxation of Singular Stress in Adhesively Bonded Joint at High Temperature

  • Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.35-39
    • /
    • 2018
  • This paper deals with the relaxation of singular stresses developed in an epoxy adhesive at high temperature. The interface stresses are analyzed using BEM. The adhesive employed in this study is an epoxy which can be cured at room temperature. The adhesive is assumed to be linearly viscoelastic. First, the distribution of the interface stresses developed in the adhesive layer under the uniform tensile stress has been calculated. The singular stress has been observed near the interface corner. Such singular stresses near the interface corner may cause epoxy layer separated from adherent. Second, the interfacial thermal stress has been investigated. The uniform temperature rise can relieve the stress level developed in the adhesive layer under the external loading, which can be viewed as an advantage of thermal loading. It is also obvious that temperature rise reduces the bonding strength of the adhesive layer. Experimental evaluation is required to assess a trade-off between the advantageous and deleterious effects of temperature.

The electrical and optical Properties of the OELD using the Cz-TPD for cathode interface layer (음극접합층으로 Cz-TPD를 사용한 OELD의 전기적 광학적 특성)

  • Choi, W.J.;Lim, M.S.;Jeong, D.Y.;Lee, J.K.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.124-127
    • /
    • 2002
  • In this study, The cathode interface layer (CIL) was investigated using aromatic diamine derivatives. Cz-TPD (4,4'-biscarbazolyl(9)-biphenyl) used in the cathode interface layers is investigated emition charcaracteristics at the green organic electroluminescent devices. TPD (N,N' -dyphenyl -N -N'-bis (3-methy phenyl)-1,1' -biphenyl-4,4' -diamine) as the hole transformer layer and $Alq_{3}:tris$ (8-hyd-roxyquinoline) aluminium) as the electron transport layer and emiting layer maded use of the organic electroluminescent device. The Organic Electroluminescent Device with Ag cathode and CIL of Cz-TPD(4,4'-biscarbazolyl(9)-biphenyl) showed good EL characteristics compare to a conventional Mg:Ag device and also an improved storage stability. [1] As the change in MgAg, Cz-TPD/Ag, Ag at the chthode, the electrical and optical charcaracteriseics were investigated.

  • PDF

Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface (Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향)

  • Oh, Se-Woong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.101-124
    • /
    • 2002
  • The convergence rate of a numerical procedure barred on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems (BVP's) depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It hee been observed that the Robin condition(mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. Since the convergence rate is very sensitive to the parameter, Tang[17] suggested another interface condition called over-determined interface condition. Based on the over-determined interface condition, we formulate the two-layer multi-parameterized SAM. For the SAM and the one-dimensional elliptic model BVP's, we determine analytically the optimal values of the parameters. For the two-dimensional elliptic BVP's , we also formulate the two-layer multi-parameterized SAM and suggest a choice of multi-parameter to produce good convergence rate .

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF