• Title/Summary/Keyword: Interface Bonded Specimen

Search Result 52, Processing Time 0.021 seconds

An Investigation on the Behavior of Fracture Mechanics as the Type of Mode I at Specimen Bonded with Tapered Carbon Fiber Reinforced Plastic (경사진 CFRP로 접합된 시험편에서의 Mode 1 형 파괴역학적 거동에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong Sik
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • This paper aims at estimating the fracture behavior at the bonded part of composite material. CFRP is manufactured as the type of TDCB. The static analysis of Mode 1 due to the configuartion factor of m is carried out. Four kinds of specimens have the configuartion factor(m) of 2, 2.5, 3 and 3.5. As the study result, the displacements at specimens are shown to be similar each other in these four cases. At m of 3.5, the reaction force becomes highest as 412 N and is shown to be improved as much as 14% by comparing m of 2. The data on defection of the bonded interface and reaction force are thought to be contributed to the structural design of CFRP and the safe design.

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic (접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik;Kook, Jeong Han
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

Convergence Study on Damage and Static Fracture Characteristic of the Bonded CFRP structure with Laminate angle (적층 각도를 가진 CFRP 접착 구조물의 파손 및 정적 파괴 특성에 관한 융합 연구)

  • Lee, Jung-Ho;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.155-161
    • /
    • 2019
  • As composite is the light weight material whose durability and mechanical property are more superior than the existing general material. By taking notice of the composite with light weight, this study was about to investigate the static fracture characteristic of the bonded CFRP structure jointed with adhesive. Also, CFRP double cantilever beam with the variable of laminate angle was designed and the static fracture analysis was carried out. The laminate angles of CFRP double cantilever beam designed for this study were $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ individually. As the study result, the specimen with the laminate angle of $45^{\circ}$ was shown to have the durability better than those with the layer angles of $30^{\circ}$ and $45^{\circ}$. It was checked that the specimen with the laminate angle of $30^{\circ}$ had the weakest durability among all specimens. The damage data of the bonded CFRP structure by laminate angle could be secured through this study result. As the damage data of bonded interface obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum (발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석)

  • Sun, Hong-Peng;Cheon, Seong S.;Cho, Jae-Ung
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.248-253
    • /
    • 2014
  • In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Brazing of TiAl and AISI4140 steel using an Ag-Cu-Ti insert metal (Ag-Cu-Ti삽입금속을 이용한 TiAl과 AISI4140 강의 브레이징)

  • 구자명;이원배;김명균;김대업;김영직;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.45-47
    • /
    • 2004
  • We have investigated the microstructures and the mechanical properties of TiA1/Cerameti1721 (Ag-Cu-Ti insert metal)/AISI4140 joints at 800$^{\circ}C$ for 60 to 300s using induction brazing method. Two continuous reaction layers of AICuTi and AICu$_2$Ti were formed at the interface between the braze and TiAl, whose thickness increased with the brazing time. The braze consisted of Ag-rich, Ti-rich, CuTi and CuTi$_2$ phases. The maximum tensile strength achieved 296MPa, which was 71% of that of TiAl base metal, for the specimen bonded at 800$^{\circ}C$. Further increase of the brazing temperature and time resulted in constant deterioration of its bonding strength due to large amount of brittle IMC.

  • PDF

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

Formation of a Core/Rim Structure in Ti(C, N)-based Cermets (Ti(C, N)계 써메트의 유심구조 형성거동)

  • Kim, Suk-Hwan
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.10-17
    • /
    • 2006
  • Model experiment was introduced to obtain the formation of a core/rim structure by only liquid phase reaction in Ti(C, N)-based cermet alloys. Infiltrated Ti(C, N)-Ni, $MO_2C-Ni$, and TaC-Ni cermets were bonded to sandwiched specimen by heat treatment $1450^{\circ}C$ for 5hr. With nitrogen addition, both (Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim structure was nucleated around comer of cuboidal Ti(C, N) core. However, equilibrium shapes of(Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim were different possibly due to the effect of interface energy. The core/rim and rim! binder interfaces were parallel to each other with TaC addition, while rotated to each other with $MO_2C$ addition.

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.