DOI QR코드

DOI QR Code

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic

접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석

  • Lee, Jung-Ho (Department of Mechanical Engineering, Graduate School, Kongju University) ;
  • Cho, Jae-Ung (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Cheon, Seong-Sik (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Kook, Jeong Han (School of Mechanical Engineering, Korea University of Technology and Education)
  • Received : 2015.09.07
  • Accepted : 2015.12.18
  • Published : 2015.12.31

Abstract

In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

본 논문에서는 복합재료 접합부의 파손거동 예측을 위해 CFRP를 DCB 형태로 가공하여 Mode 1 정적해석을 수행하였다. 시편은 각각 25 mm, 30 mm, 35 mm, 40 mm의 4가지 경우로, 방향성을 지니지 않은 탄소섬유의 물성치를 이용하였다. Model 1 해석을 통해 나온 결론으로는 25 mm에서 낮은 힘으로 가장 늦게 접착부에서 떨어지는 것을 볼 수 있었으며 40 mm에서 가장 높은 힘이 발생하였다. 접합부의 접착계면 탈락은 25 mm의 시험편 두께에서 9.75 mm로 가장 느리게 나타났으며 40 mm의 시험편 두께에서 7.82 mm로 가장 빠르게 나타난 것을 볼 수 있었다. 이 탈락은 시험편의 파괴에 의한 것이다. 접착계면의 탈락과 이에 따른 반력에 관한 본 연구 결과는 CFRP의 안전한 구조설계에 이바지할 수 있을 것으로 사료된다.

Keywords

References

  1. Boang, S.O., Kim, K.S., Kim, S.H., Song, S.G., and Cho, J.U., "Study on Compression Test of Aluminum Foam and Honeycomb Sandwich Composites", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 12, No. 9, pp. 3802-3807, 2011. https://doi.org/10.5762/KAIS.2011.12.9.3802
  2. Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Paraschi, M., and Williams, J.G., "The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test", Engineering Fracture Mechanics, Vol. 70, No. 2, pp. 233-248, 2003. https://doi.org/10.1016/S0013-7944(02)00031-0
  3. De. Giorgi, M., Carofalo, A., Dattoma, V., Nobile, R., and Palano, F., "Aluminum Foams Structural Modelling," Computers & Structures, Vol. 88, Issues 1-2, pp. 25-35, 2010. https://doi.org/10.1016/j.compstruc.2009.06.005
  4. Shin, K.B. and Koo, D.H., "A Study on the Evaluation of the Failure for Carbody Structures Made of Laminated Fiber-reinforced Composite Materials Using Total Laminate Approach", Korean Society for Composite Materials, Vol. 17, No. 1, pp. 18-28, 2004.
  5. Blackman, B.R.K., Dear, J.P., Kinloch, A.J., MacGillivray, H., Wang, Y., Williams, J.G., and Yayla, P., "The Failure of Fibre Composites and Adhesively Bonded Fibre Composites under High Rates of Test Part III Mixed-mode I/II and Mode II Loadings", Journal of Materials Science, Vol. 31, No. 17, pp. 4467-4477, 1996. https://doi.org/10.1007/BF00366342
  6. Hashemi, S., Kinloch, A.J., and Williams, J.G., "The Analysis of Interlaminar Fracture in Uniaxial Fibre-polymer Composites", Proc. R. Soc. Lond. Vol. 427, No. 1872, pp. 173-199, 1990. https://doi.org/10.1098/rspa.1990.0007
  7. Paul, A. and Ramamurty, U., "Strain Rate Sensitivity of a Closed-cell Aluminum Foam", Materials Science and Engineering: A, Vol. 281, Issues 1-2, pp. 1-7, April, 2000. https://doi.org/10.1016/S0921-5093(99)00750-9
  8. Mohamed, M., Anandan, S., Huo, Z., Birman, V., Volz, J., and Chandrashekhara, K., "Manufacturing and Characterization of Polyurethane Based Sandwich Composite Structures", Composite Structures, Vol. 123, pp. 169-179, 2015. https://doi.org/10.1016/j.compstruct.2014.12.042
  9. Marzi, S., Biel, A., and Stigh, U., "On Experimental Methods to Investigate the Effect of Layer Thickness on the Fracture Behavior of Adhesively Bonded Joints," International Journal of Adhesion and Adhesives, Vol. 31, No. 8, pp. 840-850, 2011. https://doi.org/10.1016/j.ijadhadh.2011.08.004
  10. Jung, J.W., Kim, S.H., Park, J.K., and Lee, W.I., "Research ofn the Development of the Properties of PLA Composites for Automatic Interior Parts," Korean Society for Composite Materials, Vol. 24, No. 3, pp. 1-5, 2011.