• Title/Summary/Keyword: Interaction Gesture

Search Result 226, Processing Time 0.034 seconds

Gesture Recognition using Training-effect on image sequences (연속 영상에서 학습 효과를 이용한 제스처 인식)

  • 이현주;이칠우
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.222-225
    • /
    • 2000
  • Human frequently communicate non-linguistic information with gesture. So, we must develop efficient and fast gesture recognition algorithms for more natural human-computer interaction. However, it is difficult to recognize gesture automatically because human's body is three dimensional object with very complex structure. In this paper, we suggest a method which is able to detect key frames and frame changes, and to classify image sequence into some gesture groups. Gesture is classifiable according to moving part of body. First, we detect some frames that motion areas are changed abruptly and save those frames as key frames, and then use the frames to classify sequences. We symbolize each image of classified sequence using Principal Component Analysis(PCA) and clustering algorithm since it is better to use fewer components for representation of gestures. Symbols are used as the input symbols for the Hidden Markov Model(HMM) and recognized as a gesture with probability calculation.

  • PDF

Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition (사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현)

  • Song, Bok Deuk;Lee, Seung-Hwan;Choi, HongKyw;Kim, Sung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.396-402
    • /
    • 2022
  • User interactions are being developed in various forms, and in particular, interactions using human gestures are being actively studied. Among them, hand gesture recognition is used as a human interface in the field of realistic media based on the 3D Hand Model. The use of interfaces based on hand gesture recognition helps users access media media more easily and conveniently. User interaction using hand gesture recognition should be able to view images by applying fast and accurate hand gesture recognition technology without restrictions on the computer environment. This paper developed a fast and accurate user hand gesture recognition algorithm using the open source media pipe framework and machine learning's k-NN (K-Nearest Neighbor). In addition, in order to minimize the restriction of the computer environment, a stereoscopic image control system based on user hand gesture recognition was designed and implemented using a web service environment capable of Internet service and a docker container, a virtual environment.

Development of Emotion-Based Human Interaction Method for Intelligent Robot (지능형 로봇을 위한 감성 기반 휴먼 인터액션 기법 개발)

  • Joo, Young-Hoon;So, Jea-Yun;Sim, Kee-Bo;Song, Min-Kook;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.587-593
    • /
    • 2006
  • This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills for the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.

A Controlled Study of Interactive Exhibit based on Gesture Image Recognition (제스처 영상 인식기반의 인터렉티브 전시용 제어기술 연구)

  • Cha, Jaesang;Kang, Joonsang;Rho, Jung-Kyu;Choi, Jungwon;Koo, Eunja
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Recently, building is rapidly develop more intelligently because of the development of industries. And people seek such as comfort, efficiency, and convenience in office environment and the living environment. Also, people were able to use a variety of devices. Smart TV and smart phones were distributed widely so interaction between devices and human has been increase the interest. A various method study for interaction but there are some discomfort and limitations using controller for interaction. In this paper, a user could be easily interaction and control LED through using Kinect and gesture(hand gestures) without controller. we designed interface which is control LED using the joint information of gesture obtained from Kinect. A user could be individually controlled LED through gestures (hand movements) using the implementation of the interface. We expected developed interface would be useful in LED control and various fields.

Hand Gesture Segmentation Method using a Wrist-Worn Wearable Device

  • Lee, Dong-Woo;Son, Yong-Ki;Kim, Bae-Sun;Kim, Minkyu;Jeong, Hyun-Tae;Cho, Il-Yeon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.541-548
    • /
    • 2015
  • Objective: We introduce a hand gesture segmentation method using a wrist-worn wearable device which can recognize simple gestures of clenching and unclenching ones' fist. Background: There are many types of smart watches and fitness bands in the markets. And most of them already adopt a gesture interaction to provide ease of use. However, there are many cases in which the malfunction is difficult to distinguish between the user's gesture commands and user's daily life motion. It is needed to develop a simple and clear gesture segmentation method to improve the gesture interaction performance. Method: At first, we defined the gestures of making a fist (start of gesture command) and opening one's fist (end of gesture command) as segmentation gestures to distinguish a gesture. The gestures of clenching and unclenching one's fist are simple and intuitive. And we also designed a single gesture consisting of a set of making a fist, a command gesture, and opening one's fist in order. To detect segmentation gestures at the bottom of the wrist, we used a wrist strap on which an array of infrared sensors (emitters and receivers) were mounted. When a user takes gestures of making a fist and opening one's a fist, this changes the shape of the bottom of the wrist, and simultaneously changes the reflected amount of the infrared light detected by the receiver sensor. Results: An experiment was conducted in order to evaluate gesture segmentation performance. 12 participants took part in the experiment: 10 males, and 2 females with an average age of 38. The recognition rates of the segmentation gestures, clenching and unclenching one's fist, are 99.58% and 100%, respectively. Conclusion: Through the experiment, we have evaluated gesture segmentation performance and its usability. The experimental results show a potential for our suggested segmentation method in the future. Application: The results of this study can be used to develop guidelines to prevent injury in auto workers at mission assembly plants.

Conditions of Applications, Situations and Functions Applicable to Gesture Interface

  • Ryu, Tae-Beum;Lee, Jae-Hong;Song, Joo-Bong;Yun, Myung-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.507-513
    • /
    • 2012
  • Objective: This study developed a hierarchy of conditions of applications(devices), situations and functions which are applicable to gesture interface. Background: Gesture interface is one of the promising interfaces for our natural and intuitive interaction with intelligent machines and environments. Although there were many studies related to developing new gesture-based devices and gesture interfaces, it was little known which applications, situations and functions are applicable to gesture interface. Method: This study searched about 120 papers relevant to designing and applying gesture interfaces and vocabulary to find the gesture applicable conditions of applications, situations and functions. The conditions which were extracted from 16 closely-related papers were rearranged, and a hierarchy of them was developed to evaluate the applicability of applications, situations and functions to gesture interface. Results: This study summarized 10, 10 and 6 conditions of applications, situations and functions, respectively. In addition, the gesture applicable condition hierarchy of applications, situation and functions were developed based on the semantic similarity, ordering and serial or parallel relationship among them. Conclusion: This study collected gesture applicable conditions of application, situation and functions, and a hierarchy of them was developed to evaluate the applicability of gesture interface. Application: The gesture applicable conditions and hierarchy can be used in developing a framework and detailed criteria to evaluate applicability of applications situations and functions. Moreover, it can enable for designers of gesture interface and vocabulary to determine applications, situations and functions which are applicable to gesture interface.

Implementation of Pen-Gesture Recognition System for Multimodal User Interface (멀티모달 사용자 인터페이스를 위한 펜 제스처인식기의 구현)

  • 오준택;이우범;김욱현
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.121-124
    • /
    • 2000
  • In this paper, we propose a pen gesture recognition system for user interface in multimedia terminal which requires fast processing time and high recognition rate. It is realtime and interaction system between graphic and text module. Text editing in recognition system is performed by pen gesture in graphic module or direct editing in text module, and has all 14 editing functions. The pen gesture recognition is performed by searching classification features that extracted from input strokes at pen gesture model. The pen gesture model has been constructed by classification features, ie, cross number, direction change, direction code number, position relation, distance ratio information about defined 15 types. The proposed recognition system has obtained 98% correct recognition rate and 30msec average processing time in a recognition experiment.

  • PDF

Tracking and Recognizing Hand Gestures using Kalman Filter and Continuous Dynamic Programming (연속DP와 칼만필터를 이용한 손동작의 추적 및 인식)

  • 문인혁;금영광
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.13-16
    • /
    • 2002
  • This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.

  • PDF

Hand Gesture Recognition Suitable for Wearable Devices using Flexible Epidermal Tactile Sensor Array

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1732-1739
    • /
    • 2018
  • With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.