Abstract
This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills for the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.
영상을 통한 감정 인식 기술은 사회의 여러 분야에서 필요성이 대두되고 있음에도 불구하고 인식 과정의 어려움으로 인해 풀리지 않는 문제로 남아 있다. 인간의 움직임을 이용한 감정 인식 기술은 많은 응용이 가능하기 때문에 개발의 필요성이 증대되고 있다. 영상을 통해 감정을 인식하는 시스템은 매우 다양한 기법들이 사용되는 복합적인 시스템이다. 따라서 이를 설계하기 위해서는 영상에서의 움직임 추출, 특징 벡터 추출 및 패턴 인식 등 다양한 기법의 연구가 필요하다. 본 논문에는 이전에 연구된 움직임 추출 방법들을 바탕으로 한 새로운 감정 인식 시스템을 제안한다. 제안된 시스템은 은닉 마르코프 모델을 통해 동정된 분류기를 이용하여 감정을 인식한다. 제안된 시스템의 성능을 평가하기 위해 평가데이터 베이스가 구축되었으며, 이를 통해 제안된 감정 인식 시스템의 성능을 확인하였다.