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Hand Gesture Recognition Suitable for Wearable Devices using Flexible 
Epidermal Tactile Sensor Array
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Abstract – With the explosion of digital devices, interaction technologies between human and 
devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can 
be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. 
Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it 
is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted 
with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-
sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle 
activities. The sensors, however, are generally too sensitive to environmental disturbances such as 
electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture 
recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to 
measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, 
we extracted feature sets, and the gestures were subsequently classified using the support vector 
machine. The performance of the proposed gesture recognition method is very promising in 
comparison with two previous non-contact and contact gesture recognition studies.

Keywords: Flexible epidermal tactile sensor array, Hand gesture recognition, Wearable device, 
Wearable sensor.

1. Introduction

With the explosion of digital devices, interaction 
technologies between human and devices are required more
than ever. Among them, gesture recognition technologies 
have gained a great deal of attention with their simpler 
interface [1 - 5]. In particular, hand gesture recognition is 
advantageous in that it can be widely used. Essentially, 
hand gesture recognition is divided into the two groups: the 
contact sensor and the non-contact sensor. The non-contact 
sensor is mostly based on visual technology [6, 7]. It 
extracts information on the shape and movements of the 
hand from a momentarily image through various techniques
and then recognizes the hand gestures from this information. 
Wei Lu et al. (2016) [8] proposed a novel feature vector 
which is suitable for representing dynamic hand gestures, 
and presented a solution to recognize such gestures using 
the feature vector with just a Leap Motion controller 
(LMC). Guillaume Plouffe et al. (2015) [9] proposed a 
natural user interface that recognizes and tracks hand 
gestures based on depth data acquired by a Kinect sensor in 
real time. Alternatively, for the contact sensor, the user 
directly wears the sensor. Such sensors include the inertial 
sensor, the magnetic sensor, the gyro sensor and the 
electromyography (EMG) sensor. Wrapping the sensor 

around the user's forearm or wrist and wearing a glove 
attached to the sensor are examples of gesture recognition 
[10 - 12]. In these technologies, the most commonly used 
method of recognizing gestures by the sensors is to detect 
the user's muscular activities according to hand movements. 
For this, EMG sensor is commonly used to measure the 
muscular activities because it measures the electric 
potential to activate the muscle by electrodes attached on 
the skin [13]. There are many studies for gesture recognition
using EMG sensor as an input [14-16]. However, the 
electric potential of muscles is, in general, too sensitive to 
electric noise, because the magnitude of the electric potential
is in the range of sub millivolts, which is significantly 
small compared to the electric noise induced by wall-
electricity. In addition, it requires an amplifier circuit that 
includes a voltage follower and a differential amplifier, 
which makes the electrodes or peripherals slightly bulky. 
Another drawback is that it needs to be directly attached on 
the skin. These factors make the application of EMG 
challenging to mobile devices [17].

Another way to recognize the human intention is force-
sensitive resistors (FSRs) [18, 19]. The recognition 
mechanism of FSRs is to detect the muscular activity by 
monitoring change of resistors according to the swelling of 
muscles. FSRs is generally known for it is robust to noise 
compared to the other sensors, but it has the drawback that 
the output voltage of FSRs sensors is nonlinear because of 
the relationship between an output voltage and the 
resistance [20].
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To improve the problems with EMG and FSRs sensor, 
many researchers proposed a new sensor. Pyeong-Gook 
Jung et al. proposed the sensor for recognizing the 
muscular activities based on air-pressure sensors and air-
bladders [17]. It detects the muscular activity by measuring 
the change of the air pressure in an air-bladder contacting 
the interested muscles. They verified the performance of 
the air-pressure sensors are better than EMG sensor in 
terms of wear-comfort, reliability, linearity, and durability.

In this paper, we propose a novel contact gesture 
recognition method based on Flexible Epidermal Tactile 
Sensor Array (FETSA) that is used to measure electrical 
signals according to movements of the wrist. The detection 
mechanism of FETSA is similar to FSRs sensors, but we 
provide enhanced usability in terms of wearing the sensor 
due to flexible characteristic. For verifying the performance
of the sensor, we accomplish comparison test between a 
commercial EMG sensor and FSRs sensor, and we compare
the performance of the proposed system with two previous 
non-contact and contact gesture recognition studies. For 
the comparison, we set experimental conditions equal to 
the previous studies. Furthermore, we accomplish another 
recognition experiments using gestures we define in this 
research. To recognize gestures using the FETSA, we 
remove an artifact through a preprocessing method and 
then extract feature sets, such as stochastic values.

The rest of this paper is organized as follows. Section 2 
explains the FETSA. Sections 3 and 4 present the 
recognition method that is proposed in this research and the 
experiments performed, respectively. Section 5 presents 
summaries and conclusions.

2. Flexible Epidermal Tactile Sensor Array

In this research, the Flexible Epidermal Tactile Sensor 
Array (FETSA) is used for measuring the physical 
deformation of the sensor according to the movement of 
the wrist. Therefore, the sensor acquires data in the form of 
a change of electrical resistance following the muscle’s 
movement. A design that optimizes suitable positions and 
the number of sensors for the movement in the wrist 
muscles is a necessary part of developing the flexible 
sensor array. The sensor array was experimentally designed 
with an array of 16 sensors by focusing on the extensor 
pollicis longus for the wrist movement and the flexor 
pollicis longus for the finger movement. Fig. 1 shows the 
logical model of the Flexible Epidermal Tactile Sensor 
Array.

The gesture recognition sensor array was fabricated on a 
flexible polyimide to improve the fit for the surface of the 
body of the user. Firstly, metal deposition was performed 
with Ni-Cr and Cu in order to make a resistor whose 
resistance changes according to the movement of the wrist 
on a flexible substrate (polyimide). In the following, a 
coating was made using DFR (dry film photoresist) to 

achieve a uniform PR (photoresist) coating. After the 
exposure process, PR developing and Cu etching were 
sequentially performed. After etching, the DFR coating, 
exposure, and development were performed one more time, 
and the Ni-Cr was etched. Finally, a cover layer was 
formed on the exposed metal to protect the sensor. The 
fabricated sensor was packaged with silicone to protect the 
sensor and induce an improved wrist movement (KE-12, 
Shin-Etsu Co.). The fabricated flexible sensor array 
showed bending characteristics up to a curvature radius of 
5 mm. Depending on the movement of the wrist, the 
resistance value of the flexible array sensor is processed 
using a circuit and converted into a digital code (analog-to-
digital) value. This coded value is then used for gesture 
recognition. The sensitivity of the sensor measured about 
0.05143 Ω/g. Fig. 2 shows a flexible sensor array that has 
been manufactured using the above process, with the image 
taken using an optical microscope.

2.1 Detection mechanism of FETSA

In order to detect the deformation of the sensor 
according to the movement of the wrist in a reliable way, 
the FETSA consists of a strain gauge whose resistance is 
able to change according to the movement of the wrist on a 

Fig. 1. The logical model of the Flexible Epidermal Tactile 
Sensor Array

Fig. 2. Fabricated Flexible Sensor Array and sensor image 
taken with an optical microscope (Scale bar, 100 
μm)
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flexible substrate. Therefore, the FETSA measures the 
change of resistance with the relaxation and contraction of 
wrist muscles.

Various muscles under the wrist contract and relax while 
the wrist is moving. For example, the extensor carpi 
radialis longus muscle under the forearm contracts when 
the wrist is angled up. As shown Fig. 3, changes in the 
thickness of the wrist are caused by the expansion and 
contraction of the muscles according to the movements of 
the wrist. Therefore, the degree of crookedness of the 
sensor wrapped around the wrist changes and resistance 
changes because the strain gauge is expanded.

3. Gesture Recognition

Fig. 4 shows the overall flowchart of the proposed 
gesture recognition method.

3.1 Preprocessing

While a bio-signal is recorded, the mixing of signals 
sometimes occur. These artifacts are recorded by confusing 
a heartbeat with a movement of the wrist as an artery 
positioned under the wrist. It is necessary to remove such 
artifacts as it leads to a degradation of the quality of the 
signal. As shown Fig0 5(a), a stably recorded signal is 
periodically deformed by a heartbeat. As this can a cause 
reduction in the accuracy of gesture recognition, we use a 
median filter to remove these artifacts. The median filter is 
effective for removing impulse noises such as these 
artifacts while being able to preserve the existing property 
of the signal. Fig. 5(b) shows the results with the removed 
artifacts.

3.2 Feature extraction

In previous studies, bio-signals such as EMG have been 
analyzed in frequency domains using Fourier transform. 
However, Fourier transforms are not effective for com-
putational complex problems and are not suitable for 

non-stationary signals, such as bio-signals. Therefore, in 
this study, we extract time series features that are relatively 
simple in the frequency domain in terms of the 
computational complexity.

The difference absolute mean value (DAMV) feature 
vector is a measure of signal variation equal to the average 
absolute difference of two sequential values. The equation 
is as follows:
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The difference absolute standard deviation value 
(DASDV) is a feature that represents the standard 
deviation value of the difference between two sequential 
values. The feature is expressed by equation (2):
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The mean absolute value (MAV) is a measure of signal 
power equal to the average absolute value of the signal. 
The equation is as following:

(a)                       (b)

Fig. 3. Example of deformation of a tactile sensor with 
relaxation and contraction of wrist muscles. (a) 
Relaxation. (b) Contraction

Fig. 4. The overall flowchart

(a)                     (b)

Fig. 5. (a) Signal varied by heartbeat. (b) The results with 
removed artifacts



Sung-Woo Byun and Seok-Pil Lee

http://www.jeet.or.kr │ 1735

Fig. 6. Example of extracted DAMV feature
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3.3 Support vector machine

A support vector machine with a polynomial kernel is 
used to classify gestures. We use Sequential Minimal 
Optimization (SMO) to optimize the machine learning 
algorithm. Generally, as SVM is not affected by noise data 
and does not generally cause overfitting, it is used in 
various fields. However, SVM requires optimization 
testing for optimal models and parameters. In order to 
resolve the XOR problem, we use the Radial Bias Function 
(RBF), with the parameters experimentally set.

3.4 Gesture detection

Using the preprocessing described in section 3.1, the 
artifacts of the recorded signal are removed. And then, 
three features are extracted from the signal after 
preprocessing. The period of the extraction is about 0.13 
second in consideration of the time for making a gesture. 
Fig. 6 is an example of the extracted DAMV feature when 
a subject makes a gesture.

In order to train using only a feature when making a 
gesture, we picked the peak point of the signal. The peak 
point is extracted in order to train only the feature of the 
period when subjects make a gesture. We train SVM using 
the feature inside the red circle, as shown in Fig. 6. And 
then, the SVM classifies gestures from the signal of the 
sensor. Using the output of classification, the probability of 
each gesture is calculated. The equation can be expressed 
as:

Pr
Outvector

obability
Outvector

=
å

(4)

Lastly, the gesture with the highest probability is 
detected. If the probability is under 80%, a gesture is not 
detected. 

The gesture detection speed is computed using Visual 
Studio 2010 with Intel i7-4770 3.40GHz, 16 GB RAM and 

64-bit Windows 7 operating system. The speed detecting a 
gesture was 750 milliseconds.

4. Experiments

In order to verify the performance of our proposed 
method, we accomplish comparison test between a 
commercial EMG sensor and FSRs sensor, and we 
compare with two previous non-contact and contact gesture 
recognition studies. To compare with previous studies, we 
set the conditions of the experiment equal to the previous 
studies [17, 21]. Furthermore, we perform a recognition 
experiment using the gestures we define in this research. 
Fig. 7(a) shows a test environment for the proposed gesture 
recognition. Subjects who participated in this experiment 
wear the FETSA sensor covered with a band, as shown in 
Fig. 7(b).

4.1 Comparison with EMG and FSRs sensor

To verify the reliability of FETSA, we compare the 
sensor with EMG and FSRs sensors which are most 
commonly used for detecting the user's muscular activities. 
For this, a commercial FSRs sensor, RA9P with Arduino, 
and a commercial EMG sensor and Muscle Sensor v3 kit 
are used.

Fig. 8 shows experimental results of the comparison. 

(a)                (b)

Fig. 7. (a) Test environment for the proposed gesture 
recognition. (b) FETSA sensory band

Fig. 8. Experimental results of comparison with EMG and 
FSRs sensor
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The signal is acquired from the sensors while the subject 
who attaches each sensor remains motionless. For the 
quantitative comparison for the reliability of sensors, 
signal-to noise ratio (SNR) is calculated. To estimate a 
desired signal, low-pass filter is used. The SNR equation is 
as follows:

1010log ( )
signal

noise

P
SNR

P
= (5)

The SNR of FETSA signal is about 27.92, while the 
SNR of FSRs and EMG is 11.56 and 15.67 respectively. 

4.2 Linearity

As described in section 2.1, the deformation of the 
sensor is measured by a change of resistance with the 
relaxation and contraction of wrist muscles. Therefore, it is 
expected that the change of resistance measurement is 
proportional to the angle of the wrist. However, because 
there are many factors that conflict with these assumptions, 
we performed an experiment for the verification of linearity. 
A subject was asked to fold their wrist while maintaining a 
constant angle while the signal was measured. In order to 
test linearity, we used six different wrist angles, consisting 
of 0, 15, 30, 45, 60 and 75 degrees.

Fig. 9 shows the linearity test results. Every sensor 
output was used to perform the linearity test, however, 
three representative channels are shown in Fig. 9 as 
examples. The subject repeated the same experiment 10 
times, and the average and standard deviation values are 
shown in Fig. 9. According to the results, the outputs were 
close to linear, although the data show inflections, which 
might be due to different influences. Therefore, sensor 
output increases in proportion to the angle of the wrist.

4.3 Repeatability

It is important to show good repeatability with a sensor. 
Therefore, an experiment was carried out for the 
verification of repeatability. A subject was asked to clench 

and open their fists iteratively. This was repeated 25 times. 
Fig. 10 shows the experimental results as an example.

Every sensor output was used to perform the repeatability
test, however, six representative channels are shown in Fig.
10 as examples. As shown in Fig. 10, the same signal 
pattern was observed for all moments. In addition, we 
measured the average and standard deviation of repeated 
signals at moments when the fist was clenched. For 
example, the channel 7 sensor shows an average value of 
1029.1 and standard deviation of 8.04. The average value 
of all sensors was about 994.8, and the standard deviation 
value of all sensors was about 8.71. According to the 
results, the standard deviations were very small compared 
to the average value, which verifies that the FETSA is able 
to accurately measure muscle activity iteratively.

4.4 Comparison with non-contact gesture recognition

Seo Yul Kim et al [21] introduced a hand gesture 
recognition sensor using ultra-wideband impulse signals, 
which are reflected from the hand. In this study, six 
American Sign Language (ASL) hand gestures are defined 
for the experiment. In addition, to classify the gestures, a 
Convolution Neural Network (CNN), which extracts its 
own features and constructs a classification model, was 

Fig. 9. Linearity test results

Fig. 10. Repeatability test results

Fig. 11. The six gestures that were defined in previous 
research [21]
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used. Fig. 11 shows the six gestures that were defined in 
the previous study.

A total of five people to part in this experiment. Each 
participant performed each of the six gestures in Fig. 11 
100 times. The signal according to each of the six gestures 
is obtained from the FETSA sensor. Therefore, we 
constructed a 3000-point data set equal to the previous 
research. We randomly divided the data into two subsets: 
80% for training and 20% for testing.

The experimental results are presented in Fig. 12. The 
results show that the average accuracy of the previous 
study with CNN is 91 % [21], the average accuracy of the 
previous study with SVM is 83.33% [21] and the average 
accuracy of the proposed method is 95.83%. In previous 
research, an accuracy of 100% for the five gestures ("S", 
"E", "V", "B", "C") was achieved. However, the "W" 
gesture shows a low accuracy as the gestures of "W" and 
"V" are similar. In contrast, the "W" gesture exhibits a high 
accuracy in the proposed gesture recognition method, 
although the "E" and "V" gestures have a slightly lower 
accuracy compared to the previous research.

4.5 Comparison with contact gesture recognition

Pyeong-Gook Jung et al [17] introduced a new method 
for recognizing the muscular activities based on air-
pressure sensors and air-bladders. Muscular activity is 
detected by measuring the change of the air pressure in an 
air-bladder that is in contact with the interested muscle. 
The principle of measuring the muscular activity is similar 
to the method of FSRs. For gesture recognition, the rule 
base of fuzzy logic was used. The rule base was mainly 
determined from the muscle roles of each gesture and the 
air bladders corresponding to the muscles. Fig. 13 shows 
the six gestures that were defined in the previous research.

Each participant performed each set of experiments 
more than 10 times. The experimental results for the 
comparison between each subject are presented in Table 1. 

From the results, the average accuracy of the proposed 
method was 98.15%, greater than the average accuracy of 
the previous research (95.35%) [17].

4.6 Hand gesture recognition with the FETSA sensor

The nine hand gestures that we defined in this research 
are shown in Fig. 14: The pinch of the finger [(1) in the 
figure]; the flexion and extension of the fingers [(2) and 
(3)]; the flexion and extension of the wrist [(4) and (5)]; the 
twist of the wrist [(6), (7), (8) and (9)].

Total 10 subjects are participated in this study. The 
subjects were composed of six males and four females. 
Before the experiments, the subjects trained the SVM to 
recognize the gestures for five seconds. The average of 
the training error rate was 4.24%. Each experiment is 
accomplished 30 times per gesture, with the gesture 
randomly selected by the experiment organizer. The subjects
made a gesture according to the organizer’s instructions. 
Therefore, the gesture recognition is accomplished for a 
total of 2700 times.

The experimental results are presented in Fig. 15. For 
the investigated nine gestures, the average classification 
accuracy was 97%. In general, the misclassification rate was 
broadly low. However, the misclassifications of the input 

Fig. 12. Classification accuracy for the "S", "E", "V", "W", 
"B" and "C" gestures from the previous studies 
with CNN and SVM [21], and with proposed 
method

Fig. 13. The six gestures that were defined in previous 
research [17]

Fig. 14. The nine gestures defined in this research
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of gesture 1 with the output gesture is 6, and the input of 
gesture 8 with the output of gesture 2 was observed 
relatively higher than other misclassifications.

5. Conclusion

In this research, we developed the Flexible Epidermal 
Tactile Sensor Array (FETSA), used for measuring the 
electrical signal according to the movement of the wrist. To 
recognize gestures using FETSA, we removed artifacts 
using a preprocessing method and we subsequently 
extracted feature sets. The gestures were classified using 
the support vector machine. The performance of the 
proposed gesture recognition method was verified with 
comparisons with two previous non-contact and contact 
gesture recognition studies. Furthermore, we performed a 
recognition experiment using gestures that we define in 
this research. Results showed that our proposed method 
performed better than the previous studies. Also, for the 
hand gesture recognition using the nine gestures defined 
here, the average classification accuracy was 97%.

In future work, we plan to measure many gestures from 
various human subjects to train a system for general-
purpose hand gesture recognition.

Acknowledgements

This research was supported by a 2016 Research Grant 
from Sangmyung University.

References

[1] Chao Xu, Parth, H. Pathak and Prasant Mohapatra, 

“Finger-writing with Smartwatch: A Case for Finger 
and Hand Gesture Recognition using Smartwatch”. 
Proceedings of the 16th International Workshop on 
Mobile Computing Systems and Applications, Santa 
Fe, NM, USA, Feb. 2015.

[2] Zhiyuan Lu, Xiang Chen, Qiang Li, Xu Zhang, and 
Ping Zhou, “A Hand Gesture Recognition Framework 
and Wearable Gesture-Based Interaction Prototype 
for Mobile Devices” IEEE Transactions on Human-
Machine Systems, vol. 44, no. 2, pp. 293-299, April 
2014.

[3] Xiang Chen, Xu Zhang, Zhang-Yan Zhao, Ji-Hai 
Yang, Vuokko Lantz and Kong-Qiao Wang, “Hand 
Gesture Recognition Research Based on Surface 
EMG Sensors and 2D-accelerometers,” Wearable 
Computers, 2007 11th IEEE International Symposium 
on, Boston, MA, USA, Oct. 2007.

[4] Jess McIntosh, Charlie McNeill, Mike Fraser, Frederic
Kerber, Markus Löchtefeld and Antonio Krüger, 
“EMPress: Practical Hand Gesture Classification with
Wrist-Mounted EMG and Pressure Sensing,” CHI '16 
Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems, San Jose, CA, USA, 
May 2007.

[5] Yang Zhang, Chris Harrison, “Tomo: Wearable, Low-
Cost Electrical Impedance Tomography for Hand 
Gesture Recognition,” UIST '15 Proceedings of the 
28th Annual ACM Symposium on User Interface 
Software & Technology, pp. 167-173, Nov. 2015.

[6] Zhihan, Alaa Halawani, Shengzhong Feng, Shafiq ur 
Réhman and Haibo Li, “Touch-less interactive 
augmented reality game on vision-based wearable 
device,” Abbrev. Personal and Ubiquitous Computing, 
vol. 19, no. 3-4, pp. 551-567, July 2015.

[7] Youngwook Kim, Brian Toomajian, “Hand Gesture 
Recognition Using Micro-Doppler Signatures With 
Convolutional Neural Network,” IEEE Access, vol. 4,
pp. 7125-7130, Oct. 2016.

[8] Wei Lu, Zheng Tong and Jinghui Chu, “Dynamic 
Hand Gesture Recognition With Leap Motion 
Controller,” IEEE Signal Processing Letters, vol. 23, 
no. 23, pp. 1188-1192, Sept. 2016.

[9] Guillaume Plouffe, Ana-Maria Cretu, “Static and 
Dynamic Hand Gesture Recognition in Depth Data 
Using Dynamic Time Warping,” IEEE Transactions 
on Instrumentation and Measurement, vol. 65, no. 2, 
pp. 305-316, Nov. 2015.

[10] Elisa Morganti, Leonardo Angelini, Andrea Adami, 
Denis Lalanne, Leandro Lorenzelli and Elena 
Mugellinib, “A Smart Watch with Embedded Sensors 
to Recognize Objects, Grasps and Forearm Gestures,” 
IRIS. International Symposium on Robotics and 
Intelligent Sensors 2012. Kuching, Sarawak, Malaysia, 
Sept. 2012.

[11] Georgi, Marcus, Christoph Amma, and Tanja Schultz, 
“Recognizing Hand and Finger Gestures with IMU 

Fig. 15. Experimental results with confusion matrix (%)



Sung-Woo Byun and Seok-Pil Lee

http://www.jeet.or.kr │ 1739

based Motion and EMG based Muscle Activity 
Sensing,” Proceedings of the International Conference
on Bio-inspired Systems and Signal Processing, 
Lisbon, Portugal, Jan. 2015.

[12] Yuanhao Wu, Ken Chen and Chenglong Fu, “Natural 
Gesture Modelingand Recognition Approach Based 
on Joint Movements and Arm Orientations,” IEEE 
Sensors Journal, vol. 16, no. 21, pp. 7753-7761, Aug.
2016.

[13] Hojun Yeom, Hodong Park, Young-Hui Chang, 
Youngchol Park and Kyoung-Joung Lee, “Stimulus 
Artifact Suppression Using the Stimulation Synchro-
nous Adaptive Impulse Correlated Filter for Surface 
EMG Application,” Journal of Electrical Engineering 
& Technology, vol. 7, no 3, pp. 451-458, May 2012.

[14] K. R. Wheeler and C. C. Jorgensen, “Gestures as 
input: Neuroelectric joysticks and keyboards,” IEEE 
Trans. Pervasive Comput., vol. 2, no. 2, pp. 56-61, 
Apr./Jun. 2003.

[15] M. Khezri and M. Jahed, “A neuro-fuzzy inference 
system for sEMGbased identification of hand motion 
commands,” IEEE Trans. Ind. Electron., vol. 58, no. 
5, pp. 1952-1959, May 2011.

[16] Y. Oonishi, S. Oh and Y. Hori, “A new control 
method for power-assisted wheelchair based on the 
surface myoelectric signal,” IEEE Trans. Ind. Electron.,
vol. 57, no. 9, pp. 3191-3196, Sep. 2010.

[17] Pyeong-Gook Jung, Gukchan Lim, Seonghyok Kim 
and Kyoungchul Kong, “A Wearable Gesture Re-
cognition Device for Detecting Muscular Activities 
Based on Air-Pressure Sensors,” IEEE Transactions 
on Industrial Informatics, vol. 11, no. 2, pp. 485-494, 
Feb. 2015.

[18] M. Kreil, G. Ogris, and P. Lukowicz, “Muscle activity 
evaluation using force sensitive resistors,” in Proc. 
Int. Symp. Med. Devices Biosens, Hong Kong, China, 
Dec. 2008.

[19] G. Ogris, M. Kreil, and P. lukowicz, “Using FSR 
based muscule activity monitoring to recognize 
manipulative arm gestures,” in Proc. IEEE Int. Symp. 
Wearable Comput, Boston, MA, USA, Oct. 2007.

[20] P. Lukowicz, F. Hanser, C. Szubski, and W. 
Schobersberger, “Detecting and interpreting muscle 
activity with wearable force sensors,” in Proc. 4th Int. 
Conf. Pervasive Comput., Dublin, Ireland, May 2006.

[21] Seo Yul Kim, Hong Gul Han, Jin Woo Kim, 
Sanghoon Lee and Tae Wook Kim, “Predictive 
control estimating operator’s intention for stepping-
up motion by exo-skeleton type power assist system 
HAL,” IEEE Sensors Journal, vol. 17, no 10, pp. 
2975-2976, March 2017.

Sung-Woo Byun He received B.S 
degree in department of digital media 
technology from SangMyung University, 
Seoul, Korea. He is currently a PhD 
student in department of computer 
science, SangMyung University. His 
main research interests include signal 
processing, artificial intelligence, per-

sonalized media processing.

Seok-Pil Lee received BS and MS 
degrees in electrical engineering from 
Yonsei University, Seoul, Korea, in 
1990 and 1992, respectively. In 1997, 
he earned a PhD degree in electrical 
engineering also at Yonsei University. 
From 1997 to 2002, he worked as a 
senior research staff at Daewoo 

Electronics, Seoul, Korea. From 2002 to 2012, he worked 
as a head of digital media research center of Korea 
Electronics Technology Institute. He worked also as a 
research staff at Georgia Tech., Atlanta, USA from 2010 to 
2011. He is currently a professor at the dept. of electronic 
engineering, SangMyung University. His research interests 
include artificial intelligence, audio digital processing and 
multimedia searching.




