• Title/Summary/Keyword: Intelligent navigation system

Search Result 358, Processing Time 0.03 seconds

A Study of GNSS Performance Enhancement using Correction Estimation and Visible Satellites Selection (보정량 추정 및 가시위성 선정 기법을 이용한 위성항법 성능개선 연구)

  • Bong, Jae Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.995-1002
    • /
    • 2022
  • Global Navigation Satellite System(GNSS) is a convenient system that acquires position and time information of a receiver if only satellite signals can be received anywhere in the world. However navigation signals include errors and a position error occurs according to the reception state of the signal. Also, a position error is affected by the geometric arrangement of the satellites. Therefore a receiver position performance varies by the number and status of visible satellites The condition of satellite signals is not good when the satellite rises or sets and the position change of receiver occurs when the signal is blocked by an obstacle such as a building in the urban area. In this paper, we proposed methods to improve the GNSS performance by using pseudorange correction method estimating the correction amount and the visible satellites selection method. By applying the proposed methods to an environment in which the number of visible satellites changes variously, the performance enhancement was verified.

A Study on Swarm Robot-Based Invader-Enclosing Technique on Multiple Distributed Object Environments

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.806-816
    • /
    • 2011
  • Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.

Co-Evolutionary Model for Solving the GA-Hard Problems (GA-Hard 문제를 풀기 위한 공진화 모델)

  • Lee Dong-Wook;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.375-381
    • /
    • 2005
  • Usually genetic algorithms are used to design optimal system. However the performance of the algorithm is determined by the fitness function and the system environment. It is expected that a co-evolutionary algorithm, two populations are constantly interact and co-evolve, is one of the solution to overcome these problems. In this paper we propose three types of co-evolutionary algorithm to solve GA-Hard problem. The first model is a competitive co-evolutionary algorithm that solution and environment are competitively co-evolve. This model can prevent the solution from falling in local optima because the environment are also evolve according to the evolution of the solution. The second algorithm is schema co-evolutionary algorithm that has host population and parasite (schema) population. Schema population supply good schema to host population in this algorithm. The third is game model-based co-evolutionary algorithm that two populations are co-evolve through game. Each algorithm is applied to visual servoing, robot navigation, and multi-objective optimization problem to verify the effectiveness of the proposed algorithms.

Simulation of Sensor Measurements for Location Estimation of an Underwater Vehicle (수중 운반체 위치 추정 센서의 측정 시뮬레이션)

  • Han, Jun Hee;Ko, Nak Yong;Choi, Hyun Taek;Lee, Chong Moo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.208-217
    • /
    • 2016
  • This paper describes a simulation method to generate sensor measurements for location estimation of an underwater robot. Field trial of a navigation method of an underwater robot takes much time and expenses and it is difficult to change the environment of the field trial as desired to test the method in various situations. Therefore, test and verification of a navigation method through simulation is inevitable for underwater environment. This paper proposes a method to generate sensor measurements of range, depth, velocity, and attitude taking the uncertainties of measurements into account through simulation. The uncertainties are Gaussian noise, outlier, and correlation between the measurement noise. Also, the method implements uncertainty in sampling time of measurements. The method is tested and verified by comparing the uncertainty parameters calculated statistically from the generated measurements with the designed uncertainty parameters. The practical feasibility of the measurement data is shown by applying the measurement data for location estimation of an underwater robot.

Selection of Routes for Reflecting Driver's Characteristics by Adopting Multi-Attribute Utility Theory (MAUT) (다속성 효용이론을 적용한 운전자 특성별 경로 선택 연구)

  • Oh, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.25-35
    • /
    • 2011
  • Traffic volume increases due to diversification of industry. Also, Automobile ownerships also increase steadily. It is estimated that the registered number of vehicle is expected to be 20 milion in the year 2015. These trends may result in increasing the number of woman drivers and elderly drivers. Therefore, this study aims to identify routes that reflect characteristics of each driver's preferences. A survey was conducted on different routes attributes for variances drivers. Driver types were classified by gender, age, and driving career. Accordingly, a weight for road composition attribute such as number of lanes, number of accidents, slope was estimated by using Swing Weighting technique in Multi-Attribute Utility Theory. In addition, a case study was conducted and identified weights were applied to routes. In result, drivers commonly prefer short route when they considered their routes. Also, male drivers prefer speedy and shorter route than that of female drivers. Elderly drivers prefer safe routes that represent low accidents rate. Moreover driving career under a year drivers prefer safe and easy routes. Therefore, we may conclude that the necessity of diversified route information is essential in the future car navigation system.

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Development of Eco driving Simulator Module for Economical Driving (경제적 주행을 위한 친환경 주행 시뮬레이터 모듈 개발)

  • Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.151-160
    • /
    • 2009
  • The aim of this study is to propose economical driving speed index which those are geometric road status; assess the levels of which those cost-benefit of driving energy consumption and emission; are search road safety design and operational technology for driving simulator. For the objective, we analyzed the current status of driving energy consumption and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently navigation driving module is expected to be implemented in the national highway design system.

The Ramp Metering System Construction of Urban Freeway by the Intelligent Transportation System (ITS) Technology (첨단교통체계(ITS)에 의한 도시고속도록의 Ramp Metering 시스템 구축에 관한 연구)

  • 김태곤
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • Today freeway is thought to be a very important transportation facility carrying tremendous traffic flow as the main corridor within the area of between the areas. However freeway is experiencing severe congestion and accidents by increased entrance ramp flow especially at peak time period. Ramp meters on the freeway entrance ramps that supply traffic to the freeway in a measured or appropriately regulated amount are needed for alleviating freeway congestion. Because ramp meters can be operated to discharge traffic at a measured or regulated rate thus maintaining more uniform speed on the mainline section maximizing the throughput to the freeway within the capacity of a downstream bottleneck and reducing the congestion related accidents. Thus the objectives in this study were to analyze the traffic characteristics on the freeway I-94 with ramp metering system before/after ITS technology in Detroit (Michigan) area compare shifts of the traffic characteristics on the freeway I-94 before/after ITS technology and finally suggest a better ramp metering strategy for the freeway system The following results were obtained: i)Flow occupancies and speeds on the mainline merge section of freeway were shown to be a big difference depending on the peak periods areas and directions based on the distribution of traffic flow characteristics on the freeway. ii)Reduced speed was shown to be more than 5 mph and ramp flow was also shown to be more than 240 vph at peak periods if there was the ramp metering system constructed on the freeway. iii)Ramp metering system was shown to be optimally operated on the freeway if ramp flow could be maximized within the range of over 900 vph and reduced occupancy could be also maximized by no more than 2 percent at peak periods. iv)The average flows on the freeway after the ITS technology were shown to be a decrease of over 20% depending on the peak periods areas and directions when compared with those flow on the freeway before the ITS technology. over 20% depending on the peak periods areas and directions when compared with those speeds on the freeway before the ITS technology. vi)The average metering rates on the freeway after the ITS technology were shown to be an increase of over 10% depending on the peak periods areas and directions when compared with those metering rates on the freeway before the ITS technology.

  • PDF