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Abstract – Interest about social security has recently increased in favor of safety for infrastructure. In 
addition, advances in computer vision and pattern recognition research are leading to video-based 

surveillance systems with improved scene analysis capabilities. However, such video surveillance 

systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous 

events, such as having an invader in the corporate, commercial, or public sectors. For this reason, 

intelligent surveillance systems are increasingly needed to provide active social security services. In 

this study, we propose a core technique for intelligent surveillance system that is based on swarm robot 

technology. We present techniques for invader enclosing using swarm robots based on multiple 

distributed object environment. The proposed methods are composed of three main stages: location 

estimation of the object, specified object tracking, and decision of the cooperative behavior of the 

swarm robots. By using particle filter, object tracking and location estimation procedures are 

performed and a specified enclosing point for the swarm robots is located on the interactive positions 

in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined 

via the result of path navigation based on the combination of potential field and wall-following 

methods. The results of each stage are combined into the swarm robot-based invader-enclosing 

technique on multiple distributed object environments. Finally, several simulation results are provided 

to further discuss and verify the accuracy and effectiveness of the proposed techniques.   
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1. Introduction 

 

Studies on intelligent robot systems with an aim of 

achieving next-generation alternative engines have recently 

started to emerge. In the future, we expect that every 

household will have a robot that takes care of people and 

cleans the house, among others. In addition, robots can 

replace humans in performing perilous tasks, such as in 

rescue missions, bomb disposal, and detection of an 

invader of automated security systems. For these reasons, 

interest in studying autonomous intelligent robot systems 

has grown rapidly. In particular, the study of an invader 

siege using the cooperative behavior of a swarm robot 

system has attracted widespread publicity [1–3]. In the 

cooperative robot system, each robot determines its 

own path based on the position of the other robots. In this 

case, it is important for the robots to detect each other as a 

target object and estimate the location of individual swam 

robots in complex environments.  

The Kalman filter (KF) [4] is one of the most widely 

used methods for tracking and estimation due to its 

simplicity, optimality, and robustness. KF has the 

advantage of analytically obtaining the posterior 

distribution for state variable estimation. However, it is 

difficult to obtain the posterior distribution as KF if the 

actual system is nonlinear or the noise is not a Gaussian. 

Unlike the linear system, there is no optimal filter for the 

nonlinear system; instead, there are a variety of suboptimal 

filters. The most common approach is to use the extended 

KF (EKF) [5], which simply linearizes all nonlinear 

models in order for the traditional linear KF to be applied. 

Although EKF is used as a filtering strategy, over 30 years 

of experience with it has led to general consensus within 

the tracking and control community that it is difficult to 

implement and tune. The only reliable case for whole 

systems is almost linear on the time scale of update 

intervals. Recently, as a result of improved computer 

performance, an unscented KF (UFK) [6] and particle filter 

[7] using the sampling theory are being actively studied for 

estimating nonlinear systems. Unlike KF, particle filter 

represents the posterior distribution using a number of 

particles and the weight of each particle, which can 

represent the state variable. Particle filter has recently been 

known to be effective for the object tracking method. 

In general, the location estimation method of an 

individual robot can be divided into a client-based method 

and a node-based method [8]. A client-based method 

†   Corresponding Author: School of Electrical and Electronics 

Engineering, Chung-Ang University, Korea. (kbsim@cau.ac.kr) 

* School of Electrical and Electronics Engineering, Chung-Ang 

University, Korea. 

Received: April 23, 2011; Accepted: June 14, 2011 



Kwang-Eun Ko, Seung-Min Park, Junheong Park and Kwee-Bo Sim  

 

807 

calculates the position of individual robots using the 

received signal from the radio signal reception client, such 

as a tag. A global positioning system (GPS) is 

representative of a client-based tracking system client. The 

finger printing method through wireless LAN determines a 

position by using the signal sent to the client from an 

access point, and it can also be called a position 

recognition system based on the client. These methods 

determine the client position using strength, propagation 

time difference, and direction of the signal received from 

the client. Additionally, many other communication means 

are associated with the client-based method, such as RFID, 

laser, sonar, and radar, for application in an indoor 

environment. Recently, methods using Wi-Fi, UWB, and 

ZigBee are increasingly being used [9, 10]. Research on 

autonomous mobile robot has also been aiming to achieve 

cooperative behaviors and safe path navigation in a 

dynamic environment. Multiple robots are required to 

behave synchronously or cooperatively in the swarm robot 

system. A variety of algorithms are being studied to ensure 

safe navigation through obstacles in order to dynamically 

move or change the robot’s migratory route [9, 11, 12]. 

Previous studies have presented cooperative schemes, 

which can be used for the synchronization of the swarm 

robot system [13].  

One of the most widely used algorithms is the potential 

field. The potential field is a simple and effective technique, 

although it has some problems, such as the vibration and 

trap phenomena [8, 14]. A vibration phenomenon occurs 

when the robot meets an obstacle or narrow passage. 

Meanwhile, a trap phenomenon means that the robot was 

not able to get out the local minimum. To solve these 

problems, many studies have been performed. Waldo and 

Murray proposed the Laplace equation as harmonic 

functions in [15]. Borenstein and Korens proposed a 

solution by continuously developing the vector field 

histogram [3, 10, 14]. Another way to solve these problems 

is by combining the potential field methods with 

optimization algorithms, such as fuzzy rule, neural 

networks, and genetic algorithms [2, 3, 16]. In addition to 

the potential field method, Dijkstra’s algorithm and A* 

algorithm, among the path planning algorithms, were also 

introduced. Dijkstra’s algorithm is a graph search 

algorithm that solves the single-source shortest path 

problem for a graph with nonnegative edge path cost, 

producing the shortest path tree. For a given source vertex 

(node) in the graph, the algorithm finds the path with the 

lowest cost (i.e., the shortest path) between the vertex and 

every other one. It can be used to find the cost of the 

shortest paths from a single vertex to a single destination 

vertex by stopping the algorithm once the shortest path to 

the destination vertex has been determined. This algorithm 

must determine the distance between all nodes in advance, 

and it assumes that the distance cannot have a negative 

value and is not suitable for dynamic situations. A* 

algorithm is also used in path finding, which is the process 

of plotting an efficiently traversable path between points or 

what are called nodes. A* algorithm is an extension of 

Dijkstra’s algorithm and achieves better performance (with 

respect to time) by using heuristics. Like Dijkstra’s 

algorithm, A* algorithm requires complete information 

about the environment, thus a robot should have global 

information about the environment. To express the act of 

siege by adopting the abovementioned algorithms, we 

should consider the local input and global output of the 

system for mobile robot control [3]. Local input is the 

position coordinates of each robot and the invader, while 

global output is the final position of the object when the 

invader is enclosed by the swarm robots. The robot 

formation must first effectively prevent an invader escape. 

One formation that can be considered is the method of 

forming a circle around the invader. The robots determine 

this interactive location by considering the position of the 

other robots and the invader.  

In this study, we present a method for tracking a 

specified object based on the particle filter in an 

environment with multiple moving objects. In this case, we 

suppose that a swarm robot system tracks the specified 

object, such as the invader. The path navigation-based 

decision technique of the cooperative behavior of the 

swarm robots is also suggested. By using the result of 

location estimation and object tracking, a specified 

enclosing point for the number of robots is determined as 

the interactive positions in the swarm robot systems. Also, 

the behaviors of the swarm robots are determined by the 

result of the potential field-based path navigation. 
 
 

2. Related Works 

 

2.1 Wheel encoder and gyroscope-based mobile robot 

movement control parameters 

 

Wheel encoders can produce accurate measurement of 

translation but poor measurement of angle, while 

gyroscopes measure angles highly accurately. By 

combining the encoder for measuring distance and the 

gyroscope for measuring angles, a more accurate and 

useful device can be created.  

The robots’ motor controller calculates the position and 

orientation (xencoder, yencoder, θencoder) from the encoder and 

sends the data to a software controller of a computer 

onboard. The mounted rate gyroscope communicates with 

a gyroscope driver, which integrates the rate values into an 

absolute angle (θgyro). The global position (xrobot, yrobot) is 

determined by transforming the translation vector from the 

encoder space to the gyro space. The global angle (θrobot) is 

the gyroscope’s angle (θgyro). By using these parameters, 

we can describe the following factors: 

 

 1t t
encoder encoderdx x x −= −         (1) 
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 1t t
encoder encoderdy y y −= −         (2) 

 
t t
gyro encoderdθ θ θ= −         (3) 

 1 cos( ) sin( )t t
robot robotx x d dx d dyθ θ−= + −       (4) 

 1 sin( ) cos( )t t
robot roboty y d dx d dyθ θ−= + +       (5) 

 
t t
robot gyroθ θ=    (6) 

 
However, the actual location and measurement are 

different due to the systematic noises and accidental error 

during movement according to the control input. 

  

2.2 Particle filter 
 
The achievement of a particle filter for object tracking 

has been an active research topic in recent years. Particle 

filtering is a recursive Bayesian filter that estimates the 

posterior distribution conditioned on observations. It is a 

sequential Markov-chain Monte-Carlo method [17]. The 

key idea of the method is to represent the distribution by a 

set of particles with nonnegative weights [24-26]. Particle 

filters are sophisticated model estimation techniques based 

on simulation, and they have been proven very successful 

for non-linear estimation problems. The estimation process 

based on particle filters is shown below: 

 

1. Assume that ( ){ }( ) ( )
1 1: 1 1 1

1,...,
( | ) ,

i i
t t t t

i N
P X Y X ω− − − −

=
≈ . 

2. Generate an updated particle set by sampling from the 

proposal distribution, ( )
0: 1 1:~ ( | , )i

t t t tX q X X Y− . 

Usually 0: 1 1: 1( | , ) ( | )t t t t tq X X Y P X X− −=  

3. Reweigh each particle according to the following 

formula and normalize it so that ( )i
tω  sums to 1: 

 

( )( ) ( )
( )( ) 1
1 ( )( )

1:0: 1

( | ) ( | )

( | , )

ii i
ii t t t t

t t ii
t tt

P Y X P X X

q X X Y
ω ω −

−
−

∝  

4. Resample with replacement in proportion to new 

importance weights. 

 

The purpose of a particle filter is to estimate the 

sequence of hidden parameters Xt based on the observed 

data Yt (t = 0,1,2,···,n). All Bayesian estimates of Xt follow 

from the posterior distribution P(Xt |Y1:t ). The particle 

filtering procedure monitors the posterior probability of a 

first-order Markov process through the following formula: 

 

 
1

1: 1 1 1: 1( | ) ( | ) ( | ) ( | )
t

t t t t t t t t
X

P X Y P Y X P X X P X Yα
−

− − −= ∫  (7) 

 

where, Xt is the unobserved process state at time t and Yt is 

the observation at time t. And, Y1:t is the sequence of 

observation from time 1 to time t, P(Xt | Xt-1 ) is the state 

motion model or the dynamic distribution process, P(Yt|Xt ) 

is the observation model or the observation likelihood 

distribution, P(Xt |Y1:t ) is the current object state or the 

posterior distribution, P(Xt-1 |Y1:t-1 ) is the previous object 

state, and α is a normalizing factor. The integral in (7) does 

not have a closed form solution, except in the most basic 

cases; hence, particle filters are used to approximate (7) 

using a set of weighted samples {Xt
(i), ωt

(i)}, where each 

Xt
(i) is an instantiation of the process state, known as a 

particle, and ωt
(i) is the corresponding particle weights. A 

particle presentation of this density is as follows:  

 

 
( ) ( )

1:

1

( | ) ( )

N
i i

t t t t t

i

P X Y X Xω δ
=

≈ −∑     (8) 

 

where δ is the Dirac-delta function. 

Similarly, we use the recursive definition of Eq. (8) to 

compute the filtered distribution P(Xt |Y1:t) given the 

distribution P(Xt-1 |Y1:t-1 ). With a particle representation for 

P(Xt-1 |Y1:t-1 ), (8) can be approximated as follows: 

 

 
( ) ( )

1: 1 1

1

( | ) ( | ) ( | )

N
i i

t t t t tt t

i

P X Y P Y X P X Xα ω − −
=

≈ ∑      (9) 

 

To maintain the filtering distribution in (10), a particle 

filter inductively assumes that a set of N particles 

represents the filtering distribution at the previous time 

step, i.e., 
( ) ( )

1 1: 1 1,...,1 1( | ) {( , )}
i i

t t i Nt tP X Y X ω− − =− −≈ .  

A new set of N particles {Xt
(i)}i=1,…,N is sampled from a 

proposal distribution Xt
(i)~q(Xt|X0:t-1,Y1:t), and the 

importance weights of this set are computed according to 

the following: 

 

 

( )( ) ( )
( )( ) 1
1 ( )( )

1:0: 1

( | ) ( | )

( | , )

ii i
ii t t t t

t t ii
t tt

P Y X P X X

q X X Y
ω ω −

−
−

∝       (10) 

 

As an important final step, the particles in the new set 

are resampled (with replacement) in proportion to their 

importance weights to generate a uniformly weighted 

particle approximation of P(Xt |Y1:t ). This resampling step 

is necessary because without it, the distribution of the 

importance weights tends to become skewed such that after 

a few time steps, very few particles have non-zero 

importance weight.  

 

 

 

3. Particle Filter-Based Location Estimation  

 

Because of the influence of systematic noise and 

accidental errors during movement according to the control 

input, the actual location and measurement results differ. In 

order to interpolate the difference, a particle filter model is 

constructed to estimate the location of the target object. 

This problem is associated with the circle formation 

problem of the enclosed moving target. This method is 

based on the enclosed invader in a circle formation on the 

mutual localization of the swarm robots without 
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infrastructure. The first robot to be able to detect the 

invader becomes the leader. After creating a relative 

coordinate system, it calculates the enclosed point and 

transmits data to the helper robots. The correct position of 

the helper robots in the relative coordinate system must be 

determined in order to precisely enclose the invader. The 

helper robots must arrive at the correct enclosed position. 

However, because the invader is moving, the relative 

coordinate system changes. Therefore, the position of the 

helper robots must be recalculated. In the new relative 

coordinate system, the helper robots’ position is changed, 

but the enclosure point remains the same. In this study, we 

propose a particle filter for achieving a more accurate 

location recognition of the robot. 

 

3.1 Prediction  

 

Prediction means the presumption of the next positions 

of the particles. Because of the static property of a node, its 

true location cannot be changed. When particles are 

updating by the prediction step, those that are close to the 

true position of a node will achieve bigger weights and 

have higher probability to be duplicated. In this study, all 

particles are first distributed near the already known 

starting position of a helper robot. We then predict the next 

location using an encoder and a gyroscope in the 

movement of the helper robot. 

 

 1 1 1 1( ) ( | , ) ( )t t t t t tbel x P x x u bel x dx− − − −= ∫     (11) 

 

A probabilistic change of particles following the motion 

model to applying Bayes Filter is expressed in (11). The 

probability bel(xt-1) from the previous location xt-1 applies 

with the motion model P(xt|xt-1,ut-1). Consequently, bel(xt-1) 

can be calculated by ( )tbel x  from the new location xt. 

 

3.2 Weight calculation  

 

Calculating the weights of particles is an important 

problem. As in traditional particle filters, the weight of a 

particle can be determined by calculating the difference 

between the predicted position and the distance measure- 

ment. In this study, we calculate the weight of each particle 

by comparing the calculated location of the robot by 

triangulation using beacons with the predicted position of 

each particle. The probability of the current position bel(xt) 

is calculated by (12), and the sensor model P(zt | xt) is used 

to predict the location of the robot. 
 

 ( ) ( | ) ( )t t t t tbel x P z x bel xη=           (12) 

 

Then ( | )t t tP z xη  becomes the concept of weight. Hence, 

weight calculation through (12) is determined using (13). 

 

 1( | )t t t tP z xω ω −= ×             (13) 

3.3 Resampling  

 

The basic idea of resampling is to eliminate trajectories 

that have small normalized importance weights in order to 

focus on trajectories with large weights. The sampling step 

is employed to reduce the degeneracy of particle filtering. 

Each particle acquires weight through the previous two 

phases. In this phase, the new particles are sampled again 

using the weight at time t and they express the current 

location of a robot more accurately [27]. 

 

3.4 Particle filter-based location estimation experiment 
 
To demonstrate the effect of the particle filter-based 

location estimation, a simulation was performed in a 

MATLAB simulation environment. Fig. 1 shows the 

analytical result, which sets the number of creation 

sampling particles (N) at 50, 100, and 150. 

 

 

 

(a) N = 50 

 

 

(b) N = 100 

 

 

(c) N = 150 

Fig. 1. Result of particle filter-based location estimation 

experiment (N = 50, 100, and 150) 
 
 
True mean is the actual location of a robot, which can be 

measured by wheel encoder and gyroscope. The particles 

mean and new particles mean are the results of the location 
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estimation. These experimental results show that the 

proposed method is more accurate than a simple sensor 

measurement in estimating the current location of a robot. 

 

 

4. Particle Filter-Based Object Tracking  

 

4.1 Particle filter model for object tracking  

 

In general, video-based object tracking deals with non-

stationary image streams that change over time. Robust and 

real-time tracking of a moving object with video-based 

input is a problematic issue in this research area. In order 

to realize this technique, the particle filter -based method is 

used in this study. In this method, a state representation Xt, 

which may include object locations and scales, must be 

chosen. In addition, three distributions must be established: 

1) the process dynamic distribution, P(Xt|Xt-1), which 

describes object movements between time steps; 2) the 

proposal distribution, ( )
0: 1 1:~ ( | , )i

t t t tX q X X Y− , which is 

sampled at each time step to update the particle 

distribution; and 3) the observation likelihood distribution, 
( )( | )it tP Y X , which describes how objects appear within 

the image sequence Yt.  

In this study, we selected the initial state of the object to 

be tracked through mouse input as P(X0) and calculated the 

dynamical probability distribution, P(Xt|Xt-1). The object Xt 

is defined as the object we want to track, which is denoted 

as a square {x, y, width, height} in the image frame. We 

also generated particles Xt
(i) through a N(µ, Σ) with mean 

value µ, which is the current position of the object, as 

shown below:  

 

 ( )
1~ (position of ,  )i

t tX N X − Σ           (14) 

 

We then defined the proposal distribution as the process 

of dynamical probability distribution, as follows: 

 

 0: 1 1: 1( | , ) ( | )t t t t tq X X Y P X X− −=          (15) 

 

In this study, we used the hue, saturation, value (HSV) 

color-based histogram. HSV is the most common 

cylindrical coordinate representations of points in an RGB 

color model, which rearranges the geometry of RGB in an 

attempt to be more perceptually relevant than the Cartesian 

representation. In general, histogram-based retrievals in 

HSV color space show better performance than those in 

RGB color space [18]. These procedures determine the 

next location of the object by comparing the result of an 

object’s histogram and each particle’s location. 

 

4.2 Results of object tracking experiment 

 

Figs. 2, 3, and 4 show tracking samples using particle 

filter. Fig. 2 shows a video sequence of a moving ASIMO 

that records a relatively large object tracking. Fig. 3 shows 

the image sequence of a computer simulation that records 

relatively small object tracking. From these figures, it can 

be seen that the movement of an object is being tracked 

well. Fig. 4 shows the tracking result of a specified object 

in an environment with multiple moving objects using the 

proposed particle filter-based method. In this experiment, 

one video is adopted to test the performance of our 

proposed method. This video is available in [28]. From 

these figures, it can be seen that the moving object is being 

tracked well in an environment with multiple objects. 

 

 

 

 

 

Fig. 2. Single large object motion tracking 

 

 

 

Fig. 3. Single small object motion tracking 
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Fig. 4. Specified object motion tracking in multiple 

moving objects environment 

 

 

 

5. Swarm Robot-Based Invader-Enclosing Technique 

 

In an environment with swarm robot systems, the robot 

that first detects the invader becomes the leader robot 

during the patrol. After creating the relative coordinate 

system, the leader robot must calculate the enclosed point 

and transmit it to a helper robot. When the coordinate of 

the leader robot is the origin (0, 0), the coordinate of the 

invader becomes the enclosing point (0, r). The user has to 

decide the r of the distance in the surrounding environment 

and the invader’s size. The leader robot tracks the invader 

to keep the coordinates and sends detection message to the 

surrounding robots.  

In general, an enclosed formation will eventually take 

the form of a circle, as shown in Fig. 5. The message is 

received by the surrounding robots, which become the 

helper robots. The leader robot calculates the coordinates 

of the enclosure point as much as the number of helper 

robots. As shown in Fig. 5, the angle between the enclosed 

points to the center of the invader (i.e., target (0, r)) θ is 

calculated by the formula 360°/(n+1), where θ  is 

equivalent to 60°. Therefore, the angle between the leader 

robot and each helper robot to the center of the invader can 

be calculated by the equation m× θ (m=1, 2,…, n), where 

the angle is equivalent to 60° in the case of Helper 1 and 

120° in the case of Helper 2. 

 

Fig. 5. Enclosure point of circle formation 

 

At this point, the Leader calculates the enclosed point in 

the three different cases by the obtained space angle, as 

follows: 

 

Case 1: m× θ < 180°, (m = 1, 2,…, n ) 

 

The distance between the Leader robot and the enclosed 

points is unknown by the second law of cosine. For 

example, the distance between the Leader and Helper 1 is 

equal to the following equation:  
 

 2 2 2 22 cos60a r r r= + − °            (16) 
 
The angle between the enclosed point and the x axis is 

calculated by the following equation:  
 

 
(180 )ˆ 90

2

m θ
θ

° − ×
= ° −             (17) 

 
In Fig. 5, the θ̂  of Helper 1 is equal to 30°, and the 

coordinates of the enclosed point can be calculated because 

the distance of a and θ̂  is already determined. The 

coordinates of the enclosed point of the Helpers are 

computed by the following:   
 

 (x, y) = (a× cos θ̂ , a× sin θ̂ )          (18) 

 
Case 2: m× θ = 180°, (m = 1, 2,…, n ) 

 

The enclosed point is in a straight line with the Leader 

and the invader; hence, it is (0, 2r). 

 

Case 3: m× θ > 180°, (m = 1, 2,…, n ) 

 

The enclosed point is symmetric on the y axis against the 

enclosed point with an angle of 360° (m× θ). This means 

that the enclosed point is equal to (–a× cos θ̂ , a× sin θ̂ ). 

 

As shown in Fig. 5, assuming that the enclosing point is 

calculated, the number of responding robots to the message 
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equals 5, and r is equal to 2. From these conditions, the 

following parameters can be obtained. 

 

Helper 1: a = 2 because of 2 2 2 22 cos60a r r r= + − °  
and θ̂  = 30° because of m× θ = 60°. Hence, coordinate 

(a× cos θ̂ , a× sin θ̂ ) is equal to ( 3 , 1). 

 

Helper 2: a = 2 3 and θ̂  = 60° because of m× θ = 
120°. Hence, coordinate (a× cos θ̂ , a× sin θ̂ ) is equal to 

( 3 , 3). 

 

Helper 3: Because m× θ = 180°, coordinate (a× cos θ̂ , 

a× sin θ̂ ) is equal to (0, 4).  

 

Helper 4: Because m× θ = 240°, 360° – m× θ = 120°. 

Hence, the enclosed point is symmetric on the y axis 

against Helper 2. The coordinate is ( 3− , 3). 

 

Helper 5: Because m× θ = 300°, 360° – m× θ = 60°. 

Hence, the enclosed point is symmetric on the y axis 

against Helper 1. The coordinate is ( 3− , 1). 

 
 

6. Potential Field-Based Path Planning and Mobile 

Robot Navigation 

 

6.1 Potential field 
 
Probably none of the robot navigation methods has 

attracted so great an interest from researchers as the 

potential fields [19], such that so many variations of the 

method have been developed and used [20-23]. The 

method was developed as a basis for generating smooth 

trajectories for both mobile and manipulator robotic 

systems. Separately, an attractive and a repelling potential 

field are constructed to represent the relationship between 

the robot and each of the objects within the object’s 

sensory range. These fields are then combined to yield a 

single global field. A smooth trajectory is computed based 

on the gradient within the globally computed potential field. 

In this case, the potential field model consists of the 

repelling force, Frep of the obstacles and the attractive force, 

Fatt of the goal point of the robots. The vector sum of the 

repelling and attractive forces is defined as the direction of 

the robot, which determines factor Ftot. The navigation of 

the robots can be performed by moving the robot in order 

to minimize this factor Ftot. This approach generally 

assumes knowledge of the type of obstacles in the 

environment, and polygons or spheres approximate these 

known obstacles in the planning phase. It was assumed that 

the environment in the original formulation of this concept 

is static; however, the use of this approach for dynamic 

environments has been adopted.. The potentials are 

associated with the objects in the environment when they 

are encountered. Fig. 6 shows an example with repelling 

forces from the obstacles, walls, and a superimposed 

general field direction from the start to goal. The figure 

also exemplifies the potential field generation steps in the 

form of 3D surface plots. 

 

 

Fig. 6. Illustration of the potential field in 2D and 3D 

surfaces 
 
 

However, the potential field has some defects. First, the 

trap phenomenon, which is caused by the narrow width of 

the road, can occur. Second, the phenomenon of a lack of 

passage between the two near obstacles can exist. Third, a 

local minimum problem can take place.  

Fig. 7 shows an experiment that avoids obstacles and 

wherein travels to the target use the potential field. In this 

experiment, R5 and R6 robots avoid obstacles and reach 

their goals well, unlike the other robots (R1–R4), which 

cannot move due to the defects of the potential field. For 

example, R1 shows that if the width of the road suddenly 

becomes narrow, then a vibration occurs and causes the 

trap phenomenon. Moreover, R2 and R3 do not pass 

between two near obstacles because of the lack of passage. 

Lastly, R4 shows a failure to avoid the obstacles, because 

of the local minimum problem. 

 

 

Fig. 7. Potential field-based obstacles avoidance 

 

 

6.2 Wall-following mode 

 

There are two types of modes for obstacle avoidance: the 

potential field mode and the wall-following mode. The 

potential field mode can cause trap phenomenon, narrow 

passage, and local minimum problem. These limitations 
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have been serious issues, and early attempts were made to 

overcome them in a variety of ways.  

In this study, the wall-following model is optionally 

applied as a possible alternative to solve the above 

mentioned problems. 

If the trap phenomenon, narrow passage, and local 

minimum problems arise during the potential field 

procedure, the wall-following mode is applied on behalf of 

the potential field mode.  

When the robots are faced with a narrow passage 

between two near walls, the robot’s frontal sensors will be 

not able to detect the walls; however, using the wall-

following technique, the flank sensors can detect the walls. 

In this case, the robot has to reduce its movement speed, 

which can drive the original direction along the walls. If 

the robot’s sensor detects the range at less than half of the 

maximum range of the sensor, then the robot’s direction is 

modulated up to 30° from the original direction. This move 

by the robot can help induce an entry into the narrow 

passage and reduce an oscillation in this environment. 

Secondly, if Ftot becomes 0, then the robot determines 

the direction via the repulsive force, Frep only and ignores 

the attractive force, Fatt. If there are obstacles on the right 

side, then the robot’s direction is modulated up to 90° 

clockwise from the original Frep. If there are obstacles on 

the left side, then the direction is modulated up to 90° 

counter-clockwise from the original Frep. Fig. 8 shows the 

simulation of the obstacle avoidance based on the wall-

following mode. 

 

 

Fig. 8. Wall-following-based obstacle avoidance  

 

In Fig. 8, case (a) deals with the trap phenomenon, 

which causes the deceleration and oscillation of the robots. 

However, the oscillation-like behavior of R1 in Fig. 7 is 

almost reduced by the wall-following mode. Case (b) 

shows obstacle avoidance without falling into the local 

minimum. Furthermore, in case (c), the robot successfully 

passed through the two obstacles nearby, unlike R2 and R3 

in Fig. 7. Only in case (d), the robot does not drive to the 

optimal path and returns because the wall-following mode 

could not turn into the potential field mode on time. Future 

modifications are necessary for the optimal algorithm, but 

it can be seen that the robot successfully reaches the goal. 

7. Simulation 
 
In this study, in order to prove the effectiveness of the 

proposed algorithm, different simulations were performed 

three times. The results are shown in Figs. 9, 10, and 11, 

respectively. The red circles mark the starting point; the 

goals of the robot are denoted by each point that is 

inscribed in a circle; and the two lines in blue symbols 

represent the robot. The black symbols represent the 

obstacles. When the robot’s sensors detect an obstacle, the 

robot draws a red dotted line from itself to the obstacle. 

Small circles represent the invader. 

The first experiment shown in Fig. 9 is the simplest 

experiment. This experiment involves six robots in an 

obstacle-free environment enclosing the static invader by 

circle formation. Fig. 9(a) shows a situation wherein the six 

robots are located randomly, and the invader is shown in 

the middle. In Fig. 9(b), all the robots enclose the invader 

in the middle by circle formation. 

 

  

           (a)                      (b) 

Fig. 9. First experiment: (a)→(b) 

 

The second experiment shows that four robots discover 

and enclose the invader during patrolling. In this case, the 

invader does not move. In Figs. 10(a) and 10(b), the robots 

are patrolling. In Figs. 10(c) and 10(d), the robots discover 

and enclose the invader in circle formation.  

 

   

           (a)                      (b) 

 

   

           (c)                      (d) 

Fig. 10. Second experiment: (a)→(b)→(c)→(d) 

 

The final experiment shows the case wherein the invader 

is moving. Complex obstacles are placed in this 
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environment; the invader is moving while the robots are 

going to enclose the intruder. The robots succeed again to 

enclose the invader. The patrol of the four robots is shown 

in Figs. 11(a), 11(b), and 11(c). The invader appears during 

the time the four robots are patrolling in (d). Fig. 11(e) 

shows that a part of the swarm robots succeeds in 

enclosing the moving invader. Finally, it can be seen that 

the entire robots succeed in enclosing the invader in (f). 

 

   

           (a)                      (b) 

 

   

           (c)                      (d) 

 

   

           (e)                      (f) 

Fig. 11. Third experiment: (a)→(b)→(c)→(d)→(e)→(f) 
 
From the above simulations of different situations, we 

can see the robots enclosing the invader successfully using 

circle formation by the proposed algorithm. The experi- 

ments were performed repeatedly, with each simulation 

result closely monitored. Through these simulation results, 

we conclude that satisfactory performance could be 

demonstrated by the proposed algorithm. 

 
 

8. Conclusion 

 

In this study, we deal with an invader-enclosing 

technique based on the interactive location recognition 

system with swarm robots. At first, a specified object 

tracking method using a particle filter is proposed. Unlike 

previous approaches that requires analytical posterior 

distribution, such as KF,, the particle filter-based method 

represents the posterior distribution using a number of 

particles and the weight of each particle, which can 

represent the state variable. The experimental results show 

that the movement of an object is tracked well in an 

environment of multiple moving objects. Secondly, we also 

used a particle filter to improve the accuracy of the result 

of the robot location estimation. Swarm robots create the 

relative coordinate system, which consists of multiple 

robot nodes and the target node, by using this objective 

tracking method. After creating the relative coordinate 

system, it calculates the enclosed point and transmits 

information to each helper robot. Lastly, each robot is 

moved by the potential field based on the wall-following 

mode for obstacle avoidance and path planning-based safe 

navigation.  

The proposed invader-enclosing algorithm is 

implemented as an MFC-based simulation program. The 

improvements of the proposed method are suggested based 

on experimental results obtained via virtual invader-

enclosing simulation. The experimental results are 

presented to show the effectiveness of the proposed 

technique.  
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