
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, Nov. 2014 4103

Copyright © 2014 KSII

A preliminary version of this paper appeared in 17
th

 IEEE International Conference on Image Processing

(ICIP), PP: 3253 – 3256, Hong Kong, Sept. 26-29, 2010. This version enhances the sysytem performance by

using parallel processing.

http://dx.doi.org/10.3837/tiis.2014.11.025

A Parallel Implementation of Multiple
Non-overlapping Cameras for Robot Pose

Estimation

Mohammad E. Ragab
1
, and Ghada F. Elkabbany

2

1Informatics Dept., Electronics Research Institute

Cairo, Egypt

[e-mail: mehab@hotmail.com]
2Informatics Dept., Electronics Research Institute

Cairo, Egypt

[e-mail: gelkabbany@eri.sci.eg]

*Corresponding author: Ghada Elkabbany

Received July 14, 2014; accepted September 16, 2014; published November 30, 2014

Abstract

Image processing and computer vision algorithms are gaining larger concern in a variety of

application areas such as robotics and man-machine interaction. Vision allows the

development of flexible, intelligent, and less intrusive approaches than most of the other sensor

systems. In this work, we determine the location and orientation of a mobile robot which is

crucial for performing its tasks. In order to be able to operate in real time there is a need to

speed up different vision routines. Therefore, we present and evaluate a method for introducing

parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in

[1]. In this algorithm the problem has been solved in real time using multiple non-overlapping

cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back

pairs are put on the platform of a moving robot. An important benefit of using multiple cameras

for robot pose estimation is the capability of resolving vision uncertainties such as the

bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium

and high levels of parallelization. The analysis shows that the use of a multiprocessor system

enhances the system performance by about 87%. In addition, the proposed design is scalable,

which is necaccery in this application where the number of features changes repeatedly.

Keywords: Pose Estimation, Multiple-cameras, EKF, Robot Navigation, and Parallel

Processing.

4104 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

1. Introduction

Computer vision is gaining a larger importance in a variety of applications such as:

robotics, man-machine interaction, and 3D surgical operations. It not only allows a great deal

of flexibility but also the lowest degree of invasiveness compared to the most of other sensor

systems. In order to be able to operate in real time there is a need to speed up different vision

routines [2]. Computer vision is considered a good candidate for the application of parallel

processing because of the large volumes of data and the complex algorithms commonly

encountered. Parallel image processing systems can be classified into three categories:

computer-based dedicated systems, computer-based general systems and digital signal

processing (DSP)-based systems. According to this classification, the analysis and

comparison of many kinds of realization technologies and structure characteristics are carried

out in [3], and [4]. For an autonomous mobile robot, the first step to do any worthwhile task

is to determine its location and direction. This is the pose estimation which is a crucial

problem lasting-for-decades in computer vision as well as in various other fields. Obtaining

the robot ego-motion is one of its many facets. The application range extends from mixed

reality in movies to activity recognition [5], and guidance of bronchoscopic tracking [6].The

EKF has been used to solve the pose estimation problem in different settings. The two main

aspects of this use are: firstly, the number and arrangement of cameras, and secondly, the

number and usage of filters. For example, a single camera and one EKF for both pose and

structure are used in [7], [8], and in [9]. Additionally, a single camera, one EKF for pose, and

many EKFs for structure are used in [10]. Moreover, four cameras arranged in two

back-to-back stereo pairs, and one EKF for pose are used in [11] while the structure is

obtained on-demand using triangulation. On the other hand, two cameras arranged as a one

stereo pair, and one EKF for pose are used in [12] without solving for structure. An important

benefit of using multiple cameras for robot pose estimation is resolving the bas-relief

ambiguity [13]. In [14], [15], and [16], the multiple cameras are dealt with as a single

generalized camera. Multiple cameras are used in [17] and in [18] mainly as fixed cameras to

estimate the pose of an object with a known CAD model. To sum up, our motivation is to

make use of the parallel processing to estimate the pose of a moving robot within an unknown

indoor scene in real time. In particular, we speed up the multiple non-overlapping camera

implementation in [1]. The analysis shows that the use of a multiprocessor system enhances

the system performance by about 87%. In addition, the proposed design is scalable (that is to

say, increasing the number of cameras and the number of processors enhances the system

performance), which is an important factor in this application where the number of features

changes repeatedly.This paper is organized as follows: in section 2, a background of pose

estimation problem and its implementation in multiprocessor systems is given. Then, the

proposed method is detailed in section 3. In section 4, a performance evaluation of the

proposed method is given. Finally, the paper is concluded in section 5.

2. Background and Related Work

2.1 Robot Navigation and Path Planning
For any mobile platform (a robot or a vehicle), the ability to navigate in its environment is one

of the most important capabilities at all. Robot navigation means its ability to determine its

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4105

own position with respect to a frame of reference and then to plan a path towards some goal

location. Mobile robot path planning in an unknown environment is a major problem in robot

navigation. This process is crucial because it offers the robot the flexibility of reaching a point

securely without any assumed prior knowledge about the scene. In the literature, mobile robot

path planning problems are solved in various ways. For example, ultrasonic sensors are used in

[19] and [20], and laser range finders and CMOS coupled devices (CCD) arrays are used in

[21], [22], [23], [24], and [25]. These schemes allow a robot to use the sensors to map out its

surrounding environment as a grid of empty (no obstacle), occupied (obstacle) or unknown

locations (out of sensor's area). When a robot is introduced into a new environment, it takes the

readings of all the available sensors. Through accumulating these readings, several points on

the grid can be labeled as empty or occupied. Accordingly, the robot travels through the empty

space. This process is repeated at each motion step of the mobile robot until it arrives at its

destination.

2.2 Pose Estimation of a Multiple Camera System
Multiple cameras are increasingly prevalent on robots and vehicles. These cameras come in a

variety of models such as: wide-angle, fish-eye, and catadioptric. Furthermore, although

odometry is generally available on the vehicles, it may be inaccurate due to wheel slipping.

However, vision applications may use wheel odometry as a strong prior for camera pose

estimation, and in this case, an accurate camera calibration is required [26]. Many researchers

try to solve the pose estimation problem of a calibrated multi-camera system [26], [27], [28],

and [1]. Heng et. al., proposed an easy-to-use automated pipeline that handles both intrinsic

and extrinsic calibration [26]. They run an automatic intrinsic calibration for each generic

camera using a checkerboard. Afterward, they run an extrinsic calibration to obtain all

camera-odometry transforms. The extrinsic calibration is unsupervised, using natural features,

and only requiring the vehicle to be driven around for a short time. The intrinsic parameters are

optimized in a final bundle adjustment step while performing the extrinsic calibration. In

addition, the pipeline produces a globally-consistent sparse map of landmarks which can be

used for visual localization. Lee et. al., in [27], [28] suggest a model for solving the pose

estimation problem of a calibrated multi-camera system. They assume that the non-central

rays passing through the 3D world points and the multi-camera system can be represented as

Plücker lines. They show that the minimal solution for the depth of the points along the

Plücker lines is an eight degree polynomial that gives up to eight real solutions. The

coordinates of the 3D world points in the multi-camera frame are computed from the known

depths. In addition, the pose of the multi-camera system can be obtained from absolute

orientation. Moreover, the solution can be refined by including all the inlier correspondences

in a non-linear refinement step. In order to construct a real-time system, it is essential to aim

for high-performance by minimizing the computational latency. Unfortunately, tracking

objects is quite complex and requires a vast amount of computation. However, various

techniques have been proposed in an effort to reduce the computation. One such technique

verifies and updates information about the positions of the selected small windows, or features,

of an object. Selection of such windows is generally determined using a priori basis for

interesting features. It is necessary to carefully select the points where motion information can

be extracted. The basis for the selection of a point could be tracking of corners, windows with

high spatial frequency content, or regions with particular brightness patterns [29]. Tomasi and

Kanade in their work [30], and [31] derive a criterion for feature selection based on large

contrasts of intensity. The Kanade-Lucas-Tomasi (KLT) feature selection and tracking

algorithm, commonly accepted within the vision community, is chosen for this work

4106 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

compared to other feature detectors, it verifies an adequate quality without too much

computational demand. Ragab et. al., in [1] solve the problem of pose estimation in real time

using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras

arranged in two back-to-back pairs are put on the platform of a moving robot. The axes passing

through the camera centers of each pair are perpendicular. Because each camera has its

individual EKF for the pose estimation, this model is suitable for parallel processing.

2.3 Parallel Feature Selection and Tracking
Feature selection and tracking are two of the essential problems in computer vision. The

selection of features can be based on intuitive descriptions of feature quality. The feature

tracker presented by Kanade, Lucas, and Tomasi in [30], and [31] has approached the selection

of features in a way that is optimal by construction with respect to the accompanying tracking

algorithm. That is to say, the KLT method has been successfully used for feature tracking as

long as the baselines between successive frames are short. Feature selection involves

evaluating every window in the image frame for a being textured by computing the

eigenvalues of the 2×2 gradient matrix. Because the computation is completely independent

for each window being examined, this is a natural candidate for acceleration using parallelism.

Moreover, tracking in the KLT algorithm is accomplished by minimizing a dissimilarity

measure between feature windows which is another source of potential parallelism [32]. Klein

and Murray in [33] develop a system for Visual Simultaneous Localization and Mapping

(VSLAM) called Parallel Tracking and Mapping (PTAM). In PTAM, online, real-time camera

pose estimation (tracking) and structure estimation (mapping) are separated into two threads.

There has been also much effort to implement the KLT on Graphic Processing Units (GPUs)

to increase the speed especially with large frames and more features to track. Kim et. al., in

[34] implement the KLT using an affine-photometric model on GPUs, albeit with a hight

computational demand. Fassold et. al., in [35] reporte work done on carrying out the KLT

using one GPU for each feature point. Their GPU implementations achieves real-time

performance (> 25 frames per second) for High Definition (HD) video sequences and

successfully track several thousands of points. Sinha et. al., in [36] combined the

implementations of the KLT and Scale Invariant Feature Tracking (SIFT) feature extraction

algorithms on GPUs which is suitable for video analysis in real-time systems. The GPU-based

SIFT implementation extracts about 800 features from 640 × 480 video at ten frames per

second which is approximately ten times faster than an optimized CPU implementation. In this

work, we focus on using CPUs. The reason for this is the need for their general programing

capabilities to deal with the problem at hand.

3. The Parallel Implementation of Multiple Non-overlapping Camera Pose
Estimation

In this section we propose a new method for the parallel implementation of the pose estimation

algorithm proposed in [1]. The algorithm therein presents the main problems of an

autonomous mobile robot platform, which uses digital images for extracting information from

the environment for visual navigation. In this algorithm, the pose estimation problem has been

solved in real time using multiple non-overlapping cameras and the EKF. Four cameras

arranged in two back-to-back pairs are put on the platform of a moving robot without an

overlapping field of view. The two axes passing through the camera centers of each pair are

perpendicular as shown in Fig. 1.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jun-Sik%20Kim.QT.&searchWithin=p_Author_Ids:37293483000&newsearch=true

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4107

Fig. 1. The multiple non-overlapping camera model [1]

Each camera has its individual EKF for the pose estimation, therefore this model is suitable for

the parallel processing on both levels of feature tracking and pose estimation. To solve this

problem in a parallel environment, initially each camera (which represented by a task Ti) is

assigned to one processor. During run-time, each processor can estimate the time needed for

its tasks, and hence load sharing is possible. Since each task has a sequence of calculations to

be performed, these calculations can be broken into sets of computations (subtasks) that can be

executed by more than one processor. At the end of each motion step, processors may need to

communicate the accumulated cameras' fillter outputs to make the motion decision. This

decision must be done by only one processor. The amount of data to be transferred between

processors, which increases the communication overhead, is changing based on the

configuration area (image size w*h), the number of processors (M) and the length of motion

sequence. The amount of data to be transferred will increase with the size of the configuration

area. This process is repeated at each frame of the sequence until the robot reaches its

destination. From the parallel processing point of view, this application is considered to be a

divisible workload consisting of independent tasks of different sizes. The tasks' execution

times are evaluated during run-time. Fig. 2 represents the steps of the algorithm, where each

vertex represents an individual task, while the edges are the dependencies among them (the

communication between two adjacent tasks). The task T0 represents the initialization process,

tasks Ti's (1≤ i ≤4) represent the denoted camera pose estimation, and task T5 represents the

process of optimizing decision making based on the median filter and the invariant physical

dimensions of the baselines between the cameras.

Fig. 2. System representation

T1
cam 1

T3
cam 3

T4
cam 4

T5

Arbeiter

T0

Initialization

T2
cam 2

4108 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

Fig. 3. System steps (these steps must be done for each camera, cam k) where (1≤k≤4)), NF: number of

features, and Min is the minimum number of features

Ti6

 Track features ……

…….

Ti1

Get camera intrinsic parameters

Ti2

Acquire frame

Ti3

 Extract features

Ti4

Initialize 3D structure
Ti4

Ti5

Acquire frame Ti5

……

…….

Ti1

Ti2

Ti11

Ti11

EKF pose
Ti12

Ti12

EKF structure

Sequence

end

No

Yes

STOP

Send to

general

arbiter

Ti7

Ti7

Obtain initial pose

Ti8

Ti8

EKF structure

Obtain 3D

structure

Back track to the

previous frame

……

…….

Ti9

 Acquire frame

NF ≥ min

No

……

…….

Ti9

Ti10

 Track features

Yes

Extract features

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4109

Moreover, Fig. 3 represents the details of task Ti which describes the process of each camera

(cam k). Based on the time needed to calculate these tasks they are assigned priorities and

aranged in the in descending order (the camera which needs the largest execution time takes

the highest priority). For "M" processors there are three cases: (M ≤ 4), (4 < M ≤ 16) and (M >

16) which will be explained below.

3.1 First Case (M ≤ 4)
When the number of processors "M" equals four (the number of cameras), each processor is

sequentially assigned a camera from the list. In case of (M < 4), each processor is assigned










M

4
 task(s) from the list (where   denotes the floor function), and the remaining

















 M

M
*

4
4 tasks are assigned to the lightly loaded processor. As shown in Fig. 2, T5

must be executed sequentially.

3.2 Second Case (4 < M ≤ 16)
In this case, we assume that the configuration area (image size w*h) can be divided into four

quarters (Q1, Q2, Q3, and Q4), and each task Ti can be divided into four subtasks as shown in

Figure 4. That is to say, each task Ti is assigned to 








4

M
 processor(s) and the remaining

















 4*

4

M
M processors help the overloaded ones. These subtasks can be computed in

parallel. To calculate the number of subtasks assigned to each processor, the following

assumptions are made: First the number of processors assigned to the i
th
 task "T

i
" is "N

i
".

Secondly, each subtask has its different execution time.

When (M < 16), and N
i
 is less than four, each processor is assigned 









iN

4
subtask(s) and the

remaining





















 i

i

N
N

*
4

4 subtasks are assigned to the lightly loaded processors. Finally,

when (M= 16), each processor is assigned one subtask.

4110 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

Fig. 4. Four quarter representation. Tkl 1≤ (k,l)≤4, where k:denotes the camera, l: denotes the quarter,

Tk5 is the arbiter of cam k, and T5 is the general arbiter

3.3 Third Case 3: M >16
Further enhancement is obtained when the number of processors is greater than 16. In this case, more

than one processor can cooperate to execute task Tkl for each quarter. As shown in Figure 3

each task Tkl can be divided into small tasks called subtasks Ti1, Ti2, …., and Ti12. Each quarter

can behave as a single camera as shown in Figure 5. This figures show that the most

consuming time functions are: the feature extraction and the feature tracking, That is to say,

more than one processor can cooperate to execute each quarter of each camera. In this case, the

feature extraction and the feature tracking take the major amount of computation and can be

executed in parallel after being divided into small subtasks. Finally, only one processor

collects the data and computes the last task sequentially. This sequence must be repeated for

all quarters belonging to each camera.

Execution time, which is refers to the total running time of the program, is the most obvious

way of describing the performance of parallel programs. In fact, reducing this time is the aim

of parallel processing. In the next sub-section, the execution time is calculated for different

levels. Initially, for a frame within quqrter, then for a quarter, furthermore for a camera, and

finally for the whole system.

T1

11
T13 T1

4

T15

T1

2

T2

1
T23 T2

44

T25

T0

T2

2

T3

1
T33 T3

4

T35

T3

2

T4

1
T43 T4

4

T45

T4

2

T5

cam 1

cam 2

cam 3

cam 4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4111

Fig. 5. Detailed four quarters representation. Each of the four branches has the same subtasks of Figure

3, albeit on the quarter level

…

…

…

…

.

No

Yes

No

Yes

…

…

…

…

.

No

Yes

No

Yes

…

…

…

…

.

No

Yes

No

Yes

Q1
Q2 Q3 Q4

…

…

…

…

.

No

Yes

No

Yes

cam k

Stop

General Arbiter

4112 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

3.4 Determining Parallel Execution Time
Assuming that Tpar is the parallel execution time, "Tj" is the time needed to compute frame

number "j" in parallel and 1 ≤ j ≤ length of sequence (LoS). Assume that for frame number "j"

the total number of features is "NFj", the minimum number of features for quarter number "l "

is "MinFl", and the number of processors need to execute each frame in quarter number "l" is

"NPl". Then, the execution time of quarter "l" of camera "cam k" is given by:

 Tkl = Tinitial +



LoS

j
jT

1 + Tarbiter l (1)

There are two cases:

 Case 1: 0mod 








l

j

MinF

NF
, NPl = 









l

j

MinF

NF
 (where mod is the mod function)

 Case 2: 0mod 












j

j

MinF

MaxF
, NPl = 









l

j

MinF

NF
 (where   denotes the ceil function)

Using equations 2 and 3, we can calculate the time needed to compute frame " j" inside quarter

"l", and Tcommj is the communication time.

Tj = Tpose + Tacquire + Tstruct + 










commj

l

trackextract T
NP

TT
 (2)

Furthermore, using equations (1) and (2), the total time needed to execute camera "cam k" is

given by:

 Tcam k = max{Tkl} + Tarbiter k + Tcomml (3)

Finally the total execution time needed for the whole system is given by:

Tpar = max {Tcam k} + Tcommk + TGA (4)

Where Tcommk is the communication time, and TGA is the time needed for general arbiter. In the

next section, we will evaluate the proposed method and show the experimental results.

4. Experimental Results and Evaluation

In order to evaluate the system, a publicly available library written in "C" [32] is used. In

particular, the library is used to assess the feature selection and tracking algorithm, KLT. In

this work, we assume that each processor's speed is 2.5 Ghz, its memory "Pmem" equals

1Gbits, and the bandwidth "bg" is 4.2Gbps. Figure 6 shows the analysis of the proposed

technique with different number of processors (from 2 to 48). Figure 6(a) illustrates the total

parallel execution time. In addition, Figure 6(b) represents the speedup "Sp", which is the ratio

between the sequential time and its corresponding parallel time. Moreover, Figure 6(c)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4113

illustrates the system efficiency "Ep" which equals Sp/M. Finally, Figure 6(d) represents the

degree of system improvement with respect to the sequential version. This is the percentage of

improvement in the system performance with respect to the sequential execution is defined by

(Ts-Tpar)/Ts.

Total execution time sec.

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 13 14 15 16 24 48

Number of processors (M)

(a): The total execution time in seconds

Speedup

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 13 14 15 16 24 48

Number of processors (M)

Efficiency

0.1

0.6

1 2 4 5 6 8 9 10 14 15 16 24 48

Number of processors (M)

(b): Speedup (c): Efficiency

Improvement degree %

30.00%

50.00%

70.00%

90.00%

2 3 4 5 6 7 8 9 13 14 15 16 24 48

Number of processors (M)

 (d) Improvement degree compared to sequential performance

Fig. 6. The system performance: Execution time, speedup, efficiency and the improvement degree

From the above figures, we note that:

 Figures 6(a) summarizes the total parallel execution time for different number of

processors (from 2 to 48). It is shown that as the number of processors increases, the

4114 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

execution time decreases. The reduction is approximately 50% as the number of

processors increases from one to two, while the total execution time decreases by about

85% when the number of processors equals 16. When increasing the number of

processors from 16 to 24 the execution time decreases to 13% of the sequential time.

 Upon increasing the number of processors, the speedup increases, and consequently the

efficiency decreases as illustrated in Figure 6(b), (c). On the other hand, Figure 6(d)

shows the degree of improvement, compared to the sequential performance for M

=2,4,6,8,10,14,16,24 and 48 the degree of improvement is 48.7%, 71.6%, 74.8%, 80.7%,

80.9%, 84.86, 85%,, 87.5% and 90.5% respectively.

 Increasing the number of processors reduces the total execution time but

correspondingly increases the communication overhead and reduces the system

efficiency. Using 24 processors leads to a reduction of about 87.5% of the processing

time with efficiency equals to 33%. When increasing the number of processors more

than 24, they need to exchange more data between them which could lead to the

increase of the communication overhead and decrease the system efficiency. Therefore,

using 24 processors are sufficient to compromise between system performance and

utilization.

 The analysis shows that the use of a multiprocessors system enhances the system

performance. In addition, the proposed design is scalable (increasing the number of

cameras and the number of processors improves the system performance), this is an

important factor in this application where the number of features seen by each camera

changes repeatedly.

5. Conclusion

In the present paper, we have solved the robot pose estimation problem using parallel

implementation on three levels. The first level of parallelization is the coarse grained level

where the parallelization is done in the camera level. On the other hand, in the second level

(medium level) of parallelization more than one processor cooperate to compute the work of

each camera. Moreover, in the third level (fine grained level) the parallelization is done in the

loop/instruction level, where feature extraction and feature tracking tasks are divided into small

subtasks and executed in parallel. The analysis shows that the use of a multiprocessor system

enhances the system performance. It is obvious that parallel implementation of the pose

estimation approach proposed in [1] reduces its computation time by "87%" compared to the

non-parallel implementations. In addition, the proposed design is scalable, which is neccesary

for this application where the number of features changes repeatedly. The aforementioned

results are a strong stimuls for our future hardware implementation of the system.

References

[1] M. E. Ragab and K. H. Wong, “Multiple Non-overlapping Camera Pose Estimation,” in Proc.

of the 17
th

 IEEE Int. Conf. on Image Processing (ICIP), PP: 3253 – 3256, Hong Kong, Sept.

26-29, 2010. Article (CrossRef Link).

[2] T. Bräunl, “Tutorial in Data Parallel Image Processing,” Australian Journal of Intelligent

Information Processing Systems (AJIIPS), vol. 6, no. 3, pp. 164–174, 2001.
Article (CrossRef Link).

[3] Ma. Dongdong, L. Jinzong, Z. Bing, and Z. Fuzhen, “Research on the Architectures of

Parallel Image Processing Systems,” in Proc. of the 2
nd

 Int. Symposium on Intelligent

http://dx.doi.org/10.1109/ICIP.2010.5651178
http://robotics.ee.uwa.edu.au/papers/2001-Parallel-Image-Proc.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4739514

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4115

Information Technology Application (IITA '08), PP: 146 – 150 Shanghai, 20-22 Dec., 2008.

Article (CrossRef Link).

[4] J. Greco, "Parallel Image processing and Computer Vision Architecture", Bachelor of Science

Summa Cum Laude thesis, Univ. of Florida, USA, 2005. Article (CrossRef Link).

[5] O.C. Jenkins, G. Gonzalez, and M. Loper, “Dynamical motion vocabularies for kinematic

tracking and activity recognition,” in Proc. of CVPRW’06. IEEE, vol. I, pp., 147–152, 2006.

Article (CrossRef Link).

[6] L. Rai, S. A. Merritt, and W.E. Higgins, “Real-time image-based guidance method for

lung-cancer assessment,” CVPR’06. IEEE, vol. II, pp., 2437–2444, 2006.

Article (CrossRef Link).

[7] T. J. Broida, S. Chanrashekhar, and R. Chellappa, “Recursive 3-D Motion Estimation from a

Monocular Image Sequence,” IEEE Trans. Aerospace and Electronic Systems, vol. 26, no. 4,

pp.639-656, 1990. Article (CrossRef Link).

[8] A. Azarbayejani, and A.P. Pentland, “Recursive estimation of motion, structure, and focal

length,” IEEE Trans. on PAMI, vol. 17, no. 6, pp.562-575, June 1995. Article (CrossRef Link).

[9] A. Chiuso, P. Favaro, H. Jain, and S. Soatto, “Structure from Motion Causally Integrated Over

Time,” PAMI, vol. 24, no. 4, pp. 523-535, 2002. Article (CrossRef Link).

[10] Y. K. Yu, K.H. Wong, and M. Chang, “Recursive Three-Dimensional Model Reconstruction

Based on Kalman Filtering,” IEEE Trans. SMC-B, vol. 35, no. 3, pp. 587-592, 2005.

Article (CrossRef Link).

[11] M.E. Ragab, K.H. Wong, J.Z. Chen, and M.M.Y. Chang, ,"EKF Based Pose Estimation using

Two Back-to-Back Stereo Pairs,” in Proc. of ICIP’07. IEEE, vol. VI, pp., pp. 137–140,2007.

Article (CrossRef Link).

[12] Y.K. Yu, K.H.Wong, S.H.Or, and M.M.Chang, “Recursive recovery of position and orientation

from stereo image sequences without three-dimentional structure,” in Proc. of CVPR'06, vol. 1,

New Yourk, Jun, 2006. Article (CrossRef Link).

[13] P. Baker, C. Fermuller, Y. Aloimonos, and R. Pless, “A spherical eye from multiple cameras

(makes better models of the world),” in Proc. of CVPR, vol.1, pp. 576-583, 2001.

Article (CrossRef Link).

[14] W. Chang, and C. Chen, “Pose Estimation for Multiple Camera Systems,” in Proc.of ICPR, vol.

3, pp. 262 – 265, 2004. Article (CrossRef Link).

[15] M. Grossberg, and S. Nayar, “A general imaging model and a method for finding its

parameters,” in Proc.of ICCV, vol. 2, pp. 108-115, 2001. Article (CrossRef Link).

[16] R. Pless, “Using many cameras as one,” in Proc. of CVPR , vol. 2, pp. 587-593, 2003.

Article (CrossRef Link).

[17] D. C. Schurman, and D. W. Capson, “Direct Visual Servoing Using Network-synchronized

Cameras and Kalman Filter,” in Proc. of ICRA, vol. 4, pp. 4191-4197, 2002.

Article (CrossRef Link).

[18] V. Lippiello, B. Siciliano and L. Villani, “Position and Orientation Estimation Based on Kalman

Filtering of Stereo Images,” in Proc. of CCA, pp. 702-707, 2001. Article (CrossRef Link).

[19] C. McMillen, K. Stubbs, P. Rybski, S. Stoeter, M. Gini, and N. Papanikolopoulos, “Resource

Scheduling and Load Balancing in Distributed Robotic Control Systems,” Robotics and

Autonomous Systems, vol. 44, no. 3-4, pp. 251-259, 2003. Article (CrossRef Link).

[20] N. Ushimi, M. Yamamoto, J. Inoue, T. Sugimoto, M. Araoka, T. Matsuoka, T. Kiriki, Y.

Yamaguchi, T. Hasegawa, and A. Mohri, “On-line Navigation of Mobile Robot Among

Moving Obstacles Using Ultrasonic Sensors,” Lecture Notes in Computer Science, Robot

Soccer World Cup V, vol. 2377, pp. 477-483, 2002. Article (CrossRef Link).

[21] Pierre Lébraly, Eric Royer, Omar Ait-Aider, and Michel Dhome, “Calibration of

Non-Overlapping Cameras- Application to Vision-Based Robotics,” BMVC, pp: 1-12, 2010.

Article (CrossRef Link).

[22] G. Macesau and F. Moldoveanu, “Computer Vision Based Mobile Robot Navigation in

Unknown Environments,” Bulletin of the Transilvania University of Brasov, Series I:

Engineering Sciences, vol. 3, no. 52, 2010. Article (CrossRef Link).

http://dx.doi.org/10.1109/IITA.2008.182
http://www.mil.ufl.edu/publications/thes_diss/james_greco_honors_thesis.pdf
http://dx.doi.org/10.1109/CVPRW.2006.67
http://doi.ieeecomputersociety.org/10.1109/CVPR.2006.238
http://dx.doi.org/10.1109/7.55557
http://dx.doi.org/10.1109/34.387503
http://dx.doi.org/10.1109/34.993559
http://dx.doi.org/10.1109/TSMCB.2005.846665
http://dx.doi.org/10.1109/ICIP.2007.4379540
http://dx.doi.org/10.1109/CVPR.2006.249
http://dx.doi.org/doi:10.1109/CVPR.2001.990525
http://dx.doi.org/10.1109/ICPR.2004.1334517
http://dx.doi.org/10.1109/ICCV.2001.937611
http://dx.doi.org/10.1109/CVPR.2003.1211520
http://dx.doi.org/10.1109/ROBOT.2002.1014409
http://dx.doi.org/10.1109/CCA.2001.973950
http://dx.doi.org/10.1016/S0921-8890(03)00075-7
http://link.springer.com/search?facet-author=%22Nobuhiro+Ushimi%22
http://link.springer.com/search?facet-author=%22Motoji+Yamamoto%22
http://link.springer.com/search?facet-author=%22Jyun%E2%80%99ichi+Inoue%22
http://link.springer.com/search?facet-author=%22Takuya+Sugimoto%22
http://link.springer.com/search?facet-author=%22Manabu+Araoka%22
http://link.springer.com/search?facet-author=%22Takeshi+Matsuoka%22
http://link.springer.com/search?facet-author=%22Toshihiro+Kiriki%22
http://link.springer.com/search?facet-author=%22Yuuki+Yamaguchi%22
http://link.springer.com/search?facet-author=%22Yuuki+Yamaguchi%22
http://link.springer.com/search?facet-author=%22Tsutomu+Hasegawa%22
http://link.springer.com/search?facet-author=%22Akira+Mohri%22
http://link.springer.com/bookseries/558
http://link.springer.com/book/10.1007/3-540-45603-1
http://link.springer.com/book/10.1007/3-540-45603-1
http://dx.doi.org/10.1007/3-540-45603-1_63
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Royer:Eric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Ait=Aider:Omar.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dhome:Michel.html
http://www.informatik.uni-trier.de/~ley/db/conf/bmvc/bmvc2010.html#LebralyRAD10
http://dx.doi.org/10.5244/C.24.10
http://webbut.unitbv.ro/bu2010/Series%20I/BULETIN%20I%20PDF/Electrical%20Engineering,%20Electronics%20and%20Automatics/Macesanu%20G.pdf

4116 Ragab et al.: Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

[23] M. Güzel, “Autonomous Vehicle Navigation Using Vision and Mapless Strategies: A Survey,”

Hindawi Publishing Corporation Advances in Mechanical Engineering, vol. 2013, pp.1-10,

2013. Article (CrossRef Link).

[24] Francisco Bonin-Font, Alberto Ortiz and Gabriel, “Visual Navigation for Mobile Robots: a

Survey,” Journal of Intelligent and Robotic Systems, vol. 53, Issue 3, pp. 263-296, November

2008. Article (CrossRef Link).

[25] Guilherme N. DeSouza and Avinash C. Kak, “Vision for Mobile Robot Navigation: A Survey,”

IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, Feb. 2002.

Article (CrossRef Link).

[26] Lionel Heng, Bo Li, and Marc Pollefeys, “CamOdoCal: Automatic Intrinsic and Extrinsic

Calibration of a Rig with Multiple Generic Cameras and Odometry,” in Proc. of IEEE/RSJ Int.

Conf.of Intelligent Robots and Systems, July 18, 2013.

[27] Gim H. Lee, Bo Li, Marc Pollefeys, and Friedrich Fraundorfer, “Minimal Solutions for Pose

Estimation of a Multi-Camera System,” in Proc. of Int. Symposium on Robotics Research

(ISRR), 2013.

[28] Bo Li, Lionel Heng, Kevin Koeser, and Marc Pollefeys, “A Multiple-Camera System

Calibration Toolbox Using a Feature Descriptor-Based Calibration Pattern,” in Proc. of

EEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013. Article (CrossRef Link).

[29] S. Ghiasi, E. Bozorgzadeh, K. Nguyen, and M. Sarrafzadeh, “Profiling Accuracy-Latency

Characteristics of Collaborative Object Tracking Applications,” Journal of VLSI Signal

Processing Systems, vol. 42, Issue 1, pp. 43-55, January 2006. Article (CrossRef Link).

[30] B. Lucas and T. Kanade, “An iterative image registration technique with an application to

stereo vision,” in Proc. of DARPA Image Understanding Workshop, pp 121–130, April 1981.

[31] J. Shi and C. Tomasi, “Good features to track,” in Proc. of IEEE Conf. on Computer Vision and

Pattern Recognition CVPR’94, Seattle, June 1994. Article (CrossRef Link).

[32] Michael O. McCracken, “Evaluating Performance of Two Implementations of the Shi & Tomasi

Feature Tracker,” Department of Computer Science and Engineering, University of California,

San Diego, 2008. Article (CrossRef Link).

[33] G. Klein and D.Murray, “Parallel tracking and mapping for small AR workspaces,” in Proc. of

IEEE and ACM Int. Symposium on Mixed and Augmented Reality, pp. 1–10, Washington, DC,

USA, 2007. Article (CrossRef Link).

[34] Jun-Sik Kim, M. Hwangbo, and T. Kanade, “Realtime Affine-photometric KLT Feature

Tracker on GPU in CUDA Framework,” in Proc. of 12
th

 Int. IEEE Conf./ Workshops (ICCV

Workshops), on Computer Vision, pp. 886-893, Kyoto, Sept. 27 - Oct. 4 2009.

Article (CrossRef Link).

[35] H. Fassold, J. Rosner, P. Schallauer, and W. Bailer, “Realtime KLT Feature Point Tracking for

High Definition Video,” VaclavSkala and Dietmar Hildebrand, editors, GraVisMa 2009-

Computer Graphics, Vision and Mathematics for Scientific Computing, 2010.

Article (CrossRef Link).

[36] S. Sinha, J. Frahm, M. Pollefeys and Y. Genc, “Feature tracking and matching in video using

programmable graphics hardware,” Machine Vision and Applications, vol. 22, Issue 1, pp

207-217, January 2011. Article (CrossRef Link).

http://www.hindawi.com/90179804/
http://dx.doi.org/10.1155/2013/234747
http://dx.doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/10.1109/34.982903
http://www.v-charge.eu/?p=469
http://www.v-charge.eu/?p=469
http://www.v-charge.eu/?p=562
http://www.v-charge.eu/?p=562
http://www.v-charge.eu/?p=478
http://www.v-charge.eu/?p=478
http://dx.doi.org/10.1109/IROS.2013.6696517
http://dx.doi.org/10.1007/s11265-005-4162-0
http://dx.doi.org/10.1109/CVPR.1994.323794
https://cseweb.ucsd.edu/classes/fa03/cse252c/projects/mmccrack.pdf
http://dx.doi.org/10.1109/ISMAR.2007.4538852
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jun-Sik%20Kim.QT.&searchWithin=p_Author_Ids:37293483000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Myung%20Hwangbo.QT.&searchWithin=p_Author_Ids:37393673500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5453386
http://dx.doi.org/10.1109/ICCVW.2009.5457608
http://geometryalgebra.zcu.cz/GraVisMa/!_2009_GraVisMa_Abstract_proceedings.pdf#page=23
http://link.springer.com/journal/138
http://link.springer.com/journal/138/22/1/page/1
http://dx.doi.org/10.1007/s00138-007-0105-z

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 4117

Mohammad Ehab Ragab is an Assistant Professor at the Electronics Research In

stitute, Cairo, Egypt. He received the B.Sc., M.Sc., degrees from Ain Shams Univers

ity, and Cairo University, Cairo, Egypt, respectively. Then, he obtained his Ph.D. fro

m the Chinese University of Hong Kong . His research interests include: Computer vi

sion, Robotics and Image Processing.

Ghada Farouk ElKabbany is an Assistant Professor at the Electronics Research

Institute, Cairo- Egypt. She received her B.Sc. degree, M.Sc. degree and Ph.D. degree

in Electronics and Communications Engineering from the Faculty of Engineering,

Cairo University, Egypt. Her research interests include High Performance Computing

(HPC), Robotics, and Network Security.

