• Title/Summary/Keyword: Intelligent Robot Components

Search Result 36, Processing Time 0.021 seconds

Design optimization of intelligent service robot suspension system using dynamic model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF

Analysis for Patent Application Tendency in Components and Modules of Intelligent Robot (지능형 로봇 부품 및 모듈 특허동향 분석)

  • Kim, Seung-Min;Kim, Ji-Kwan;Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.4
    • /
    • pp.54-61
    • /
    • 2007
  • This research relates to the patent application tendency about the components and modules of the intelligent robot among the robotics industry in which the market is more and more expanded. The patent about the components and modules of intelligent robot was analyzed from not only Korea but also U.S, Japanese and Europe which is called as the 3 pole of patent. By this research the government which supervises the nation's research policy can obtain the objective information of the industrial tendency, so it can establish the investment policy of national research and development. And the researchers can set up the research direction for evasion from patent infringement trouble by obtaining the patent application information. This also shows whether their research can be competitive or not.

Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가 시스템 설계 및 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil;Jun, Kab-Jin;Yun, Ji-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1023-1028
    • /
    • 2010
  • Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.

Performance Evaluation of Human Robot Interaction Components in Real Environments (실 환경에서의 인간로봇상호작용 컴포넌트의 성능평가)

  • Kim, Do-Hyung;Kim, Hye-Jin;Bae, Kyung-Sook;Yun, Woo-Han;Ban, Kyu-Dae;Park, Beom-Chul;Yoon, Ho-Sub
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.165-175
    • /
    • 2008
  • For an advanced intelligent service, the need of HRI technology has recently been increasing and the technology has been also improved. However, HRI components have been evaluated under stable and controlled laboratory environments and there are no evaluation results of performance in real environments. Therefore, robot service providers and users have not been getting sufficient information on the level of current HRI technology. In this paper, we provide the evaluation results of the performance of the HRI components on the robot platforms providing actual services in pilot service sites. For the evaluation, we select face detection component, speaker gender classification component and sound localization component as representative HRI components closing to the commercialization. The goal of this paper is to provide valuable information and reference performance on appling the HRI components to real robot environments.

  • PDF

A Ubiquitous Robot System (유비쿼터스 로봇 시스템)

  • 김종환;유지환;이강희;유범상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.7-14
    • /
    • 2004
  • In an upcoming ubiquitous era, humankind will live in a ubiquitous space, where everything is connected through communication network. In this ubiquitous space, a ubiquitous robot, which can be used by anyone for any service through any device and any network at anytime and anywhere in a u-space, is expected to be required to serve seamless and context-aware services to humankind. In this paper, we introduce the ubiquitous robot, and define three components of the ubiquitous robot. The first one is "SoBot" which can be connected through the network in anywhere with environment recognition function and communication ability with human. The second one is "EmBot" which is embedded into environments and mobile robots and has localization and certification function with sensor fusion. The last one is "Mobile Robot" which serves overall physical services. This paper also introduces KAIST ITRC-Intelligent Robot Research Center that pursues the implementation of the ubiquitous robot.

Design and Performance Analysis of Framework for Guaranteeing QoS of Robot Components (로봇 컴포넌트의 QoS 보장을 위한 프레임워크의 설계 및 성능분석)

  • Lim, Jae-Seok;Cho, Moon-Haeng;Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.76-87
    • /
    • 2009
  • The growth of CPU and communication technologies have made an important contribution to the development of the network-based intelligent service robots. Robot software must guarantee the correct execution and safety of the user. To achieve this, it is highly required to research how to guarantee the QoS of the components which organize a robot software. The QoS of robot components aims to execute the component stably by processing the data stream in a correct way. By guaranteeing QoS, we can achieve the intelligence and stability of robots. In this paper, we design and implement the QoS framework to guarantee the QoS of robot components on robot platforms with limited resources. We also measure the response times of QoS requests and present the performance analysis results about it.

Development of CAN(Controller Area Network) based Platform Model for Service Robots (서비스 로봇을 위한 CAN 기반의 지능형 부품 통합 로봇 플랫폼 모델)

  • Kwak, Sangfeel;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.298-303
    • /
    • 2013
  • The robot has been widely applied to all parts for the improvement of the life quality of human beings. It is expected that the parts industry for robots is rapidly growing to one of the majority of the future robot industry. The electronic components of robots are connected to the central processing unit and an organic part of a robot system. The central processing unit must be controlled to operate more efficiently by configuring some control systems of the robot. In this paper, we propose a new platform model that centralizes several parts of a robot through the CAN based communication system and simplifies their connection structure.

A Method to Support Real-time for User-level Robot Components on Windows (윈도우 유저 레벨 로봇 컴포넌트에 실시간성 지원 방법)

  • Ju, Min-Gyu;Lee, Jin-Wook;Jang, Choul-Soo;Kim, Sung-Hoon;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.51-59
    • /
    • 2011
  • Intelligent service robots leading the future market are robots which assist humans physically, mentally, and emotionally. Since intelligent service robots operate in a tightly coupled manner with humans, their safe operation should be an inevitable consideration. For this safety, real-time capabilities are necessary to execute certain services periodically. Currently, most robot components are being developed based on Windows for the sake of development convenience. However, since Windows does not support real-time, there is no option but to use expensive third-party software such as RTX and INTime. Also since most robot components are usually execute in user-level, we need to research how to support real-time in user-level. In this paper, we design and implement how to support real-time for components running in user-level on Windows using RTiK which actually supports real-time in kernel level on Windows.

A Testing Method for URC Robot Software (URC 로봇 소프트웨어 시험 평가 방법 및 사례 연구)

  • Hwang, Sun-Myung;Chung, Yun-Koo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.657-664
    • /
    • 2007
  • URC robot offers necessary service anytime and anywhere by using a network to the robot, expanding the applicable service, keeping all the functions in itself, it undertakes functions for the causing problems through the network. URC software components are composed of HRI(Human Robot Interaction), robot action technology and others. We analyze the quality models based on ISO/IEC 9126, define URC components evaluation specification consists of 4 parts such as generic rule, instance rule, evaluation value and test method. And we define the quality process and test case design for URC, and show a testing and evaluation process for URC components.

Implementation of an Intelligent Robot Control System Based on UPnP (UPnP 기반 지능형 로봇 제어 시스템 구현)

  • Kim, Seong-Woo;Park, Yoo-Hyun;Kwon, Soon-Kak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2129-2136
    • /
    • 2012
  • With the increased demand of ubiquitous home services, intelligent robots have wide attentions. This kind of robots offer various services through middleware components which can connect with remote servers. In this paper we present an UPnP(Universal Plug and Play) based open-source software framework which makes control the robots remotely. This UPnP architecture for home networking can provide various communication methodologies like command control, eventing, presentation with web services and so on. This paper shows successful implementation results on two real platforms.